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The theory of large deviations: from Boltzmann’s 1877 calculation to
equilibrium macrostates in 2D turbulence
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Abstract

After presenting some basic ideas in the theory of large deviations, this paper applies the theory to a number of problems in
statistical mechanics. These include deriving the form of the Gibbs state for a discrete ideal gas; describing probabilistically
the phase transition in the Curie–Weiss model of a ferromagnet; and deriving variational formulas that describe the equilibrium
macrostates in models of two-dimensional turbulence. A general approach to the large deviation analysis of models in statistical
mechanics is also formulated. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The theory of large deviations studies the exponential decay of probabilities in certain random systems. It is
being applied to a wide range of problems in which detailed information on rare events is required. One is often
interested not only in the probability of rare events but also in the characteristic behavior of the system as the rare
event occurs. For example, in applications to queueing theory and communication systems, the rare event could
represent an overload or breakdown of the system. In this case, large deviation methodology can lead to an efficient
redesign of the system so that the overload or breakdown does not occur. In applications to statistical mechanics,
which will be the main focus of this paper, the theory of large deviations gives precise, exponential-order estimates
that are perfectly suited for asymptotic analysis.

This paper will discuss a number of topics in the theory of large deviations and several applications to statistical
mechanics, all united by the concept of relative entropy. This concept entered human culture through the first large
deviation calculation in science, carried out by Boltzmann. Stated in a modern terminology, his discovery was that
the relative entropy expresses the asymptotic behavior of multinomial probabilities. This statistical interpretation of
entropy has the following crucial physical implication. Entropy is a bridge between a microscopic level, on which
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physical systems are defined in terms of the complicated interactions among the individual constituent particles,
and a macroscopic level, on which the laws describing the behavior of the system are formulated.

Building on the work of Boltzmann, Gibbs asked a fundamental question. How can one use probability theory to
study equilibrium properties of physical systems such as an ideal gas, a ferromagnet, or a fluid? These properties
include such phenomena as phase transitions; e.g., the liquid–gas transition or spontaneous magnetization in a
ferromagnet. Another example arises in the study of freely evolving, inviscid fluids, for which one wants to describe
coherent states. These are steady, stable mean flows comprised of one or more vortices that persist amidst the
turbulent fluctuations of the vorticity field. Gibbs’s answer, which led to the development of classical equilibrium
statistical mechanics, is that one studies equilibrium properties via probability measures on configuration space
known today as Gibbs canonical ensembles or Gibbs states. For background in statistical mechanics, I recommend
[1–3], which cover a number of topics relevant to the contents of this paper.

One of our main purposes in this paper is to show the utility of the theory of large deviations by applying it to
a number of statistical mechanical models. Our applications of the theory include a derivation of the form of the
Gibbs state for a discrete ideal gas (Section 5); a probabilistic description of the phase transition in the Curie–Weiss
model of a ferromagnet in terms of the breakdown of the law of large numbers for the spin per site (Section 7); and
as an overview of recent work carried out in [4], a derivation of variational formulas that describe the equilibrium
macrostates in models of two-dimensional turbulence (Section 9). In terms of these macrostates, coherent vortices
of two-dimensional turbulence can be studied.

Boltzmann’s calculation of the asymptotic behavior of multinomial probabilities in terms of relative entropy was
carried out in 1877 as a key component of his paper that gave a probabilistic interpretation of the Second Law of
Thermodynamics [5]. This fundamental calculation represents a revolutionary moment in human culture during
which both statistical mechanics and the theory of large deviations were born. Boltzmann’s work is put in historical
context by Everdell in his bookThe First Moderns, which traces the development of the modern consciousness in
19th and 20th century thought [6]. Chapter 3 focuses on the mathematicians of Germany in the 1870’s – namely,
Cantor, Dedekind, and Frege – who “would become the first creative thinkers in any field to look at the world in a
fully twentieth-century manner” (p. 31). Boltzmann is then presented as the man whose investigations in stochastics
and statistics made possible the work of the two other great founders of twentieth-century theoretical physics, Planck
and Einstein. “He was at the center of the change” (p. 48).

In this paper Boltzmann’s discovery of the asymptotic behavior of multinomial probabilities in terms of relative
entropy is described in Section 3 after a preliminary section that introduces a basic probabilistic model. Two
related problems are then considered: the calculation of the probabilities of a loaded die in Section 4 and the
calculation of the probabilities of the energy states of a discrete ideal gas in Section 5. The solutions of these
problems motivate the form of the Gibbs canonical ensemble. The general concept of a large deviation principle
and related ideas are presented in Section 6. In Section 7 the theory of large deviations is used to study equilibrium
properties of a basic model of ferromagnetism known as the Curie–Weiss model. This leads in Section 8 to the
formulation of a general procedure for applying the theory of large deviations to the analysis of an extensive class of
statistical mechanical models. This general procedure is then used in Section 9 along with Sanov’s Theorem, which
generalizes Boltzmann’s 1877 calculation, to derive variational formulas that describe the equilibrium macrostates
in two models of two-dimensional turbulence; namely, the well known Miller–Robert theory and a modification of
that theory recently proposed by Turkington. Because Sanov’s Theorem plays a vital role in the derivation, this final
application of the theory of large deviations brings our focus back home to Boltzmann, through whose research in
the foundations of statistical mechanics the theory was born.
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2. A basic probabilistic model

In later sections we will investigate a number of questions in the theory of large deviations in the context of a
basic probabilistic model, which we now introduce. Letα ≥ 2 be an integer,y1 < y2 < · · · < yα a set ofα real
numbers, andρ1, ρ2, . . . , ρα a set ofα positive real numbers summing to 1. We think of3

.={y1, y2, . . . , yα} as
the set of possible outcomes of a random experiment in which each individual outcomeyk has the probabilityρk of
occurring. The vectorρ

.=(ρ1, ρ2, . . . , ρα) is an element of the set of probability vectors

Pα
.=
{
γ ∈ R

α : γ = (γ1, γ2, . . . , γα) ≥ 0,
α∑
k=1

γk = 1

}
.

Any vectorγ ∈ Pα also defines a probability measure on the set of subsets of3 via

γ = γ (dy)
.=
α∑
k=1

γk δyk (dy),

where fory ∈ 3δyk {y} = 1 if y = yk and equals 0 otherwise. Thus forB ⊂ 3, γ {B} = ∑
yk∈Bγk. For each integer

n, the configuration space forn independent repetitions of the experiment is�n
.=3n, a typical element of which is

denoted byω = (ω1, ω2, . . . , ωn). For eachω ∈ �n we define

Pn{ω} .=
n∏
j=1

ρ{ωj }

and extend this to a probability measure on the set of subsets of�n by defining

Pn{B} .=
∑
ω∈B

Pn{ω} for B ⊂ �n.

Pn is called the product measure with one-dimensional marginalsρ. With respect toPn the coordinate functions
Xj(ω)

.=ωj , j = 1,2, . . . , n, are independent, identically distributed (i.i.d.) random variables with common distri-
butionρ; that is, for any subsetsB1, B2, . . . , Bn of 3

Pn{ω ∈ �n : Xj(ω) ∈ Bj for j = 1,2, . . . , n} =
n∏
j=1

Pn{ω ∈ �n : Xj(ω) ∈ Bj } =
n∏
j=1

ρ{Bj }.

Example 1. Random phenomena that can be studied via this basic model include standard examples such as coin
tossing and die tossing and also include a discrete ideal gas.
1. Coin tossing.In this case3

.={1,2} andρ1 = ρ2
.=1/2.

2. Die tossing.In this case3
.={1,2, . . . ,6} and eachρk

.=1/6.
3. Discrete ideal gas.Consider a ‘discrete ideal gas’ consisting ofn identical, noninteracting particles, each having
α equally likely energy levelsy1, y2, . . . , yα; in this case eachρk equals 1/α. The coordinate functionsXj
represent the random energy levels of the molecules of the gas. The statistical independence of these random
variables reflects the fact that the molecules of the gas do not interact.

We will return to the discrete ideal gas in Section 5 after introducing some basic concepts in theory of large
deviations.
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3. Boltzmann’s discovery

In its original form Boltzmann’s discovery concerns the asymptotic behavior of multinomial coefficients. For the
purpose of applications in this paper, it is advantageous to formulate it in terms of a probabilistic quantity known
as the empirical vector. Forω ∈ �n andy ∈ 3 define

Ln(y) = Ln(ω, y)
.=1

n

n∑
j=1

δXj (ω){y}.

ThusLn(ω, y) equalsn−1 · #{j ∈ {1, . . . , n} : ωj = y}; it counts the relative frequency with whichy appears in
the configurationω. We then define the empirical vector

Ln = Ln(ω)
.=(Ln(ω, y1), . . . , Ln(ω, yα)) = 1

n

n∑
j=1

(δXj (ω){y1}, . . . , δXj (ω){yα}).

Ln takes values inPα. By the last equality it equals the sample mean of the i.i.d. random variables(δXj (ω){y1}, . . . , δXj (ω){yα}).
The limiting behavior ofLn is straightforward to determine. Let‖ · ‖ denote the Euclidean norm onRα. For any

γ ∈ Pα andε > 0, we define the open ball

B(γ, ε)
.={ν ∈ Pα : ‖γ − ν‖ < ε}.

Since theXj have the common distributionρ, for eachyk ∈ 3

EPn{Ln(yk)} = EPn


1

n

n∑
j=1

δXj {yk}

 = 1

n

n∑
j=1

Pn{Xj = yk} = ρk,

whereEPn denotes expectation with respect toPn. Hence by the weak law of large numbers for the sample means
of i.i.d. random variables, for anyε > 0

lim
n→∞Pn{Ln ∈ B(ρ, ε)} = 1. (1)

It follows that for anyγ ∈ Pα not equal toρ and for anyε > 0 satisfying 0< ε < ‖ρ − γ ‖
lim
n→∞Pn{Ln ∈ B(γ, ε)} = 0. (2)

As we will see, Boltzmann’s discovery implies that these probabilities converge to 0 exponentially fast inn. The
exponential decay rate is given in terms of the relative entropy, which we now define.

Definition 1 (Relative entropy). Letρ = (ρ1, . . . , ρα) denote the probability vector inPα in terms of which the
basic probabilistic model is defined. The relative entropy ofγ ∈ Pα with respect toρ is defined by

Iρ(γ )
.=
α∑
k=1

γk log
γk

ρk
.

Several properties of the relative entropy are given in the next lemma.

Lemma 1. For γ ∈ Pα, Iρ(γ ) measures the discrepancy betweenγ and ρ in the sense thatIγ (ρ) ≥ 0 and
Iγ (ρ) = 0 if and only ifγ = ρ. ThusIρ(γ ) attains its infimum of0 overPα at the unique measureγ = ρ. In
addition,Iρ is strictly convex onPα.
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Proof. For x ≥ 0 the graph of the strictly convex functionxlogx has the tangent liney = x − 1 atx = 1. Hence
xlogx ≥ x − 1 with equality if and only ifx = 1. It follows that for anyγ ∈ Pα

γk

ρk
log

γk

ρk
≥ γk

ρk
− 1 (3)

with equality if and only ifγk = ρk. Multiplying this inequality byρk and summing overk yields

Iρ(γ ) =
α∑
k=1

γk log
γk

ρk
≥

α∑
k=1

(γk − ρk) = 0.

Iρ(γ ) = 0 if and only if equality holds in Eq. (3) for eachk; i.e., if and only ifγ = ρ. This yields the first assertion
in the proposition. This proof is typical of proofs of analogous results involving relative entropy [cf. Proposition 1]
in that we use a global convexity inequality,xlogx ≥ x − 1 with equality if and only ifx = 1, rather than calculus
to determine whereIρ attains its infimum overPα. Since

Iρ(γ ) =
α∑
k=1

ρk
γk

ρk
log

γk

ρk
,

the strict convexity ofIρ is a consequence of the strict convexity ofxlogx for x ≥ 0. �

We are now ready to give the first formulation of Boltzmann’s discovery, which we state using a heuristic notation.
However, the proof uses formal calculations that can easily be turned into a rigorous proof of an asymptotic theorem.
That theorem is stated in Theorem 2. From Boltzmann’s momentous discovery both the theory of large deviations
and the Gibbsian formulation of equilibrium statistical mechanics grew.

Theorem 1(Boltzmann’s discovery – formulation 1).For anyγ ∈ Pα and all sufficiently smallε > 0

Pn{Ln ∈ B(γ, ε)} ≈ exp[−nIρ(γ )] as n → ∞.

Heuristic proof. By elementary combinatorics

Pn{Ln ∈ B(γ, ε)} = Pn

{
ω ∈ �n : Ln(ω) ∼ 1

n
(nγ1, nγ2, . . . , nγα)

}
≈ Pn{#{ωj ′s = y1} ∼ nγ1, . . . ,#{ωj ′s = yα} ∼ nγα}
≈ n!

(nγ1)!(nγ2)! · · · (nγα)! ρ
nγ1
1 ρ

nγ2
2 · · · ρnγαα .

Stirling’s formula in the weak form log(n!) = nlogn− n+ O(logn) yields

1

n
logPn{Ln ∈ B(γ, ε)} ≈ 1

n
log

(
n!

(nγ1)!(nγ2)! · · · (nγα)!
)

+
α∑
k=1

γk logρk

= −
α∑
k=1

γk logγk + O

(
logn

n

)
+

α∑
k=1

γk logρk = −
α∑
k=1

γk log
γk

ρk
+ O

(
logn

n

)

= −Iρ(γ )+ O

(
logn

n

)
.
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Theorem 1 has the following interesting consequence. Letγ be any vector inPα which differs fromρ. Since
Iρ(γ ) > 0 (Lemma 1), it follows that for all sufficiently smallε > 0

Pn{Ln ∈ B(γ, ε)} ≈ exp[−nIρ(γ )] → 0 as n → ∞,

a limit which, if rigorous, would imply Eq. (2).
Let A be a Borel subset ofPα; the class of Borel subsets includes all closed sets and all open sets. Ifρ is not

contained in the closure ofA, then by the weak law of large numbers

lim
n→∞Pn{Ln ∈ A} = 0,

and by analogy with the heuristic asymptotic result given in Theorem 1 we expect that these probabilities converge to
0 exponentially fast withn. This is in fact the case. In order to express the exponential decay rate of such probabilities
in terms of the relative entropy, we introduce the notationIρ(A)

.=inf γ∈AIρ(γ ). The range ofLn(ω) for ω ∈ �n is
the set of probability vectors having the formkkk/n, wherekkk ∈ Rα has non-negative integer coordinates summing to
n; hence the cardinality of the range does not exceednα. Since

Pn{Ln ∈ A} =
∑
γ∈A

Pn{Ln ∼ γ } ≈
∑
γ∈A

exp[−nIρ(γ )]

and

exp[−nIρ(A)] ≤
∑
γ∈A

exp[−nIρ(γ )] ≤ nαexp[−nIρ(A)],

one expects that at least to exponential order

Pn{Ln ∈ A} ≈ exp[−nIρ(A)] as n → ∞. (4)

As formulated in Corollary 1, this asymptotic result is indeed valid. It is a consequence of the following rigorous
reformulation of Boltzmann’s discovery, known as Sanov’s Theorem, which expresses the large deviation principle
for the empirical vectorsLn. That concept is defined in general in Definition 3.

Theorem 2 (Boltzmann’s discovery – formulation 2).The sequence of random probability vectors{Ln, n ∈ N }
satisfies the large deviation principle onPα with rate functionIρ in the following sense.
1. Large deviation upper bound: for any closed subsetF ofPα

lim sup
n→∞

1

n
logPn{Ln ∈ F } ≤ −Iρ(F ).

2. Large deviation lower bound: for any open subsetG ofPα

lim inf
n→∞

1

n
logPn{Ln ∈ G} ≥ −Iρ(G).

Comments on the proof. For γ ∈ Pα andε > 0, B(γ, ε) denotes the open ball with centerγ and radiusε and
B̄(γ, ε) denotes the corresponding closed ball. SincePα is a compact subset ofRα, any closed subsetF of Pα is
automatically compact. By a standard covering argument it is not hard to show that the large deviation upper bound
holds for any closed setF provided one obtains the large deviation upper bound for any closed ballB̄(γ, ε):

lim sup
n→∞

1

n
logPn{Ln ∈ B̄(γ, ε)} ≤ −Iρ(B̄(γ, ε)).
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Likewise, the large deviation lower bound holds for any open setG provided one obtains the large deviation lower
bound for any open ballB(γ, ε):

lim inf
n→∞

1

n
logPn{Ln ∈ B(γ, ε)} ≥ −Iρ(B(γ, ε)).

The bounds in the last two displays can be proved via combinatorics and Stirling’s formula as in the heuristic proof
of Theorem 1; one can easily adapt the calculations given in ([1], Section I.4). The details are omitted. �

For a class of Borel subsetsA of Pα we can now derive a rigorous version of the asymptotic formula (4). This
class consists of setsA such thatintA, the closure of the interior ofA relative toPα, equalsĀ, the closure ofA.
Any open ballB(γ, ε) or closed ballB̄(γ, ε) satisfies this condition.

Corollary 1. LetA be any Borel subset ofPα such thatintA = Ā. Then

lim
n→∞

1

n
logPn{Ln ∈ A} = −Iρ(A).

Proof. SinceĀ ⊃ A ⊃ intA,

−Iρ(Ā)≥ lim sup
n→∞

1

n
logPn{Ln ∈ Ā} ≥ lim sup

n→∞
1

n
logPn{Ln ∈ A} ≥ lim inf

n→∞
1

n
logPn{Ln ∈ A}

≥ lim inf
n→∞

1

n
logPn{Ln ∈ intA} ≥ −Iρ(intA).

The continuity ofIρ onPα implies thatIρ(intA) = Iρ(intA). Hence by the condition onA, the extreme terms in
this display are equal. The desired limit follows. �

The next corollary of Theorem 2 allows one to conclude that a large class of probabilities involvingLn converge
to 0. The analogue of this corollary in other large deviation settings is extremely useful in applications. For example,
we will use it in Section 7 to analyze the Curie–Weiss model of ferromagnetism.

Corollary 2. LetA be any Borel subset ofPα such thatĀ does not containρ. ThenIρ(Ā) > 0 and for someC < ∞
Pn{Ln ∈ A} ≤ Cexp[−nIρ(Ā)] → 0 as n → ∞.

Proof. SinceIρ(γ ) > Iρ(ρ) = 0 for anyγ 6= ρ, the positivity ofIρ(Ā) follows from the continuity ofIρ onPα.
The second assertion is an immediate consequence of the large deviation upper bound applied toĀ and the positivity
of Iρ(Ā). �

Take anyε > 0. Applying Corollary 2 to the complement of the open ballB(ρ, ε) yieldsPn{Ln /∈ B(ρ, ε)} → 0
or equivalently

lim
n→∞Pn{Ln ∈ B(ρ, ε)} = 1.

Although this rederives the weak law of large numbers forLn as already expressed in Eq. (1), this second derivation
relates the order-1 limit forLn to the point inPα – namely,ρ – where the rate functionIρ attains its infimum.
In this context we callρ the ‘equilibrium value’ ofLn with respect to the measuresPn. This limit is the simplest
example, and the first of several more complicated but related formulations to be encountered in this paper, of what
is commonly called a ‘maximum entropy principle’. Following the usual convention in the physical literature, we
will continue to use this terminology in referring to such principles even though we are minimizing the relative
entropy (equivalently, maximizing−Iρ(γ )) rather than maximizing the physical entropy. Whenρk = 1/α for each
k, the two quantities differ by a minus sign and an additive constant.
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Maximum Entropy Principle 1. γ0 ∈ Pα is an equilibrium value ofLn with respect toPn if and only if γ0

minimizesIρ(γ ) overPα; this occurs if and only ifγ0 = ρ.

In the next section we will present a limit theorem forLn whose proof is based on the precise, exponential-order
estimates given by the large deviation principle in Theorem 2.

4. A conditioned limit theorem for Ln

You participate in a crooked gambling game being played with a loaded die. How can you determine the actual
probabilities of each face 1,2, . . . ,6? The conditioned limit theorem to be introduced in this section not only gives
an answer to this apparently ambiguous question, but also, with some additional work, has important statistical
mechanical implications. As we will see in Section 5, it motivates the form of the Gibbs state for the discrete ideal gas
and, by extension, for any statistical mechanical system characterized by conservation of energy. These unexpected
theorems are the first indication of the power of Boltzmann’s discovery, which gives precise exponential-order
estimates for probabilities of the formPn{Ln ∈ A}. The theorems have the following form. Suppose that one is
given a particular setA and wants to determine a setB belonging to a certain class (e.g., open balls) such that the
conditioned limit

lim
n→∞Pn{Ln ∈ B|Ln ∈ A} = lim

n→∞Pn{Ln ∈ B ∩ A} 1

Pn{Ln ∈ A} = 1

is valid. Since to exponential order

Pn{Ln ∈ B ∩ A} 1

Pn{Ln ∈ A} ≈ exp[−n(Iρ(B ∩ A)− Iρ(A))],

one should obtain the conditioned limit ifB satisfiesIρ(B ∩A) = Iρ(A). If one can determine the point inAwhere
the infimum ofIρ is attained, then one picksB to contain this point. In the examples involving the loaded die and the
discrete ideal gas, such a minimizing point can be determined. It will lead to a second maximum entropy principle
for Ln with respect to the conditional probabilitiesPn{·|Ln ∈ A}.

We return to the question concerning the loaded die, using the basic probabilistic model introduced in Section 2
(Example 1, part 2). Upon entering the crooked gambling game, one assigns the equal probabilitiesρk = 1/6 to each
of the six faces because one has no additional information. One then observes the game forn tosses; probabilistically
this corresponds to knowing a configurationω ∈ {1, . . . ,6}n. Based on the value of

Sn(ω)
.=
n∑
j=1

Xj(ω) =
n∑
j=1

ωj ,

one desires to recalculate the probabilities of the six faces. Being a mathematician rather than a professional gambler,
I will carry this out in the limitn → ∞.

If the die were fair, then the sample meanSn(ω)/n should equal approximately the theoretical mean

ȳ
.=

6∑
k=1

kρk = 3.5.

Hence let us assume thatSn/n ∈ [z − a, z], wherea is a small positive number and 1≤ z − a < z < ȳ;
a similar result would hold if we assumed thatSn/n ∈ [z, z + a], where ȳ < z < z + a ≤ 6. We can now
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formulate the question concerning the loaded die as the following conditioned limit: determine positive numbers
{ρ∗
k , k = 1, . . . ,6} summing to 1 such that

ρ∗
k = lim

n→∞Pn
{
X1 = k|Sn

n
∈ [z− a, z]

}
.

This will be seen to follow from the following more easily answered question: in the limitn → ∞, conditioned
onSn/n ∈ [z − a, z], determine the most likely configurationρ∗ = (ρ∗

1, . . . , ρ
∗
6) of Ln. In other words, we want

ρ∗ ∈ Pα such that for anyε > 0

lim
n→∞Pn

{
Ln ∈ B(ρ∗, ε)|Sn

n
∈ [z− a, z]

}
= 1.

The form ofρ∗ is given in the following theorem; it depends only onz, not ona.
We formulate the theorem for a general state space3 = {y1, . . . , yα} and a given positive vectorρ =

(ρ1, . . . , ρα) ∈ Pα. As above, define

Sn
.=
n∑
j=1

Xj and ȳ
.=
α∑
k=1

ykρk

and fora > 0 fix a closed interval [z − a, z] ⊂ [y1, ȳ). A theorem analogous to the following would hold if
[z− a, z] ⊂ [y1, ȳ) were replaced by [z, z+ a] ⊂ (ȳ, yα].

Theorem 3.
1. There existsρ(β) ∈ Pα such that for everyε > 0

lim
n→∞Pn

{
Ln ∈ B(ρ(β), ε)|Sn

n
∈ [z− a, z]

}
= 1. (5)

The quantityρ(β) = (ρ
(β)

1 , . . . , ρ
(β)
α ) has the form

ρ
(β)
k

.= exp[−βyk]ρk∑α
j=1exp[−βyj ]ρj ,

whereβ = β(z) ∈ R is chosen so that
∑α
k=1ykρ

(β)
k = z.

2. For any continuous functionf mappingPα into R

lim
n→∞E

Pn

{
f (Ln)|Sn

n
∈ [z− a, z]

}
= f (ρ(β)).

3. For eachk ∈ {1, . . . , α}

ρ
(β)
k = lim

n→∞Pn
{
X1 = yk|Sn

n
∈ [z− a, z]

}
.

We first show thatρ(β) is well defined. Forr ∈ R simple calculus gives the following properties ofc(r)
.=log(

∑α
k=1

exp[ryk] ρk): c′′(r) > 0, c′(r) → y1 asr → −∞, c′(0) = ȳ, andc′(r) → yα asr → ∞. Hence there exists a
uniqueβ = β(z) such thatc′(−β) = ∑α

k=1ykρ
(β)
k = z, as claimed. Sincey1 < z < ȳ, β = β(z) is positive.

In order to prove the limit (5) in part 1, we express the conditional probability in Eq. (5) in terms of the empirical
vectorLn. Define the closed convex set



R.S. Ellis / Physica D 133 (1999) 106–136 115

A(z)
.=
{
γ ∈ Pα :

α∑
k=1

ykγk ∈ [z− a, z]

}
,

which containsρ(β). Since for eachω ∈ �n
1

n
Sn(ω) =

n∑
j=1

yk Ln(ω, yk),

it follows that{ω ∈ �n : Sn(ω)/n ∈ [z − a, z]} = {ω ∈ �n : Ln(ω) ∈ A(z)}. Hence using the formal notation of
Eq. (4), we have for largen

Pn

{
Ln ∈ B(ρ(β), ε)|Sn

n
∈ [z− a, z]

}
= Pn{Ln ∈ B(ρ(β), ε)|Ln ∈ A(z)}

= Pn{Ln ∈ B(ρ(β), ε) ∩ A(z)} 1

Pn{Ln ∈ A(z)}
≈ exp[−n(Iρ(B(ρ(β), ε) ∩ A(z))− Iρ(A(z)))].

The last expression, and thus the probability in the first line of the display, are of order 1 provided

Iρ(B(ρ
(β), ε) ∩ A(z)) = Iρ(A(z)). (6)

The next proposition shows thatIρ attains its infimum overA(z) at the unique pointρ(β). This gives Eq. (6) and
motivates the fact that for largen, Pn{Ln ∈ B(ρ(β), ε)|Sn/n ∈ [z − a, z]} ≈ 1. It is not difficult to convert these
formal calculations into a proof of the limit (5). The details are omitted.

Proposition 1. Iρ attains its infimum overA(z)
.={γ ∈ Pα :

∑α
k=1ykγk ∈ [z − a, z]} at the unique pointρ(β)

defined in part1 of Theorem 3.

Proof. We recall thatβ = β(z) > 0 and that for eachk ∈ {1, . . . , α}
ρ
(β)
k

ρk
= exp[−βyk]

exp[c(−β)] ,

where forr ∈ R c(r)
.=log(

∑α
k=1exp[ryk]ρk). Hence for anyγ ∈ A(z)

Iρ(γ )=
α∑
k=1

γk log
γk

ρk
=

α∑
k=1

γk log
γk

ρ
(β)
k

+
α∑
k=1

γk log
ρ
(β)
k

ρk

= Iρ(β) (γ )− β

α∑
k=1

ykγk − c(−β) ≥ Iρ(β) (γ )− βz− c(−β).

SinceIρ(β) (γ ) ≥ 0 with equality if and only ifγ = ρ(β) (Lemma 1), it follows that for anyγ ∈ A(z)

Iρ(γ ) ≥ −βz− c(−β) = Iρ(ρ
(β))

with equality if and only ifγ = ρ(β). �

Combining this proposition with part 1 of Theorem 3 gives the second maximum entropy principle in the paper.

Maximum Entropy Principle 2. Conditioned onSn/n ∈ [z − a, z], the asymptotically most likely configuration
ofLn isρ(β), which is the uniqueγ ∈ Pα that minimizesIρ(γ ) subject to the constraint thatγ ∈ A(z). In statistical
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mechanical terminology,ρ(β) is the equilibrium macrostate of{Ln} with respect to the conditional probabilities
Pn{·|Sn/n ∈ [z− a, z]}.
Part 2 of Theorem 3 states that for any continuous functionf mappingPα into R

lim
n→∞E

Pn

{
f (Ln)|Sn

n
∈ [z− a, z]

}
= f (ρ(β)).

This is an immediate consequence of part 1 and the continuity off . Part 2 of Theorem 3 is another expression of
the maximum entropy Principle 2.

Let yi be any point in3. As in ([7], p. 87), we prove part 3 of Theorem 3 by relating the conditional probability
Pn{X1 = yi |Sn/n ∈ [z− a, z]} to the conditional expectationEPn{f (Ln)|Sn/n ∈ [z− a, z]} considered in part 2.
Givenϕ any function mapping3 into R , we define a continuous function onPα by

f (γ )
.=
α∑
k=1

ϕ(yk)γk.

Sincef (Ln) = ∑α
k=1ϕ(yk)Ln(yk) = (1/n)

∑n
j=1ϕ(Xj ), by symmetry and part 2

lim
n→∞E

Pn

{
ϕ(X1)|Sn

n
∈ [z− a, z]

}
= lim
n→∞

1

n

n∑
j=1

EPn
{
ϕ(Xj )|Sn

n
∈ [z− a, z]

}

= lim
n→∞E

Pn

{
f (Ln)|Sn

n
∈ [z− a, z]

}
= f (ρ(β)) =

α∑
k=1

ϕ(yk)ρ
(β)
k .

Settingϕ
.=1yi yields the limit in part 3 of Theorem 3:

lim
n→∞Pn

{
X1 = yi |Sn

n
∈ [z− a, z]

}
= ρ

(β)
i .

With some additional work one can generalize part 1 of Theorem 3 by proving that with respect to the conditional
probabilitiesPn{·|Sn/n ∈ [z− a, a]}{Ln} satisfies the large deviation principle onPα with rate function

I (γ )
.=
{
Iρ(γ )− Iρ(A(z)) if γ ∈ A(z)
∞ if γ ∈ Pα\A(z).

This large deviation principle is not needed in the sequel, and the proof is omitted.
In the next section we will show how calculations analogous to those used to motivate Theorem 3 can be used to

derive the form of the Gibbs state for the discrete ideal gas.

5. Gibbs states for models in statistical mechanics

The discussion in the previous section concerning a loaded die applies with minor changes to the discrete
ideal gas, introduced in part 3 of Example 1. This system consists ofn identical, noninteracting particles, each
havingα possible energy levelsy1, y2, . . . , yα. Forω ∈ �n = 3n we writeHn(ω) in place ofSn(ω)

.=∑n
j=1ωj ;

Hn(ω) denotes the total energy in the configurationω. In the absence of further information, one assigns the equal
probabilitiesρk = 1/α to each of theyk ’s. Definingȳ

.=∑α
k=1ykρk, suppose that the energy per particle,Hn/n, is
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conditioned to lie in an interval [z− a, z], wherea is a small positive number andy1 ≤ z− a < z < ȳ. According
to part 3 of Theorem 3, for eachk ∈ {1, . . . , α}

ρ
(β)
k = lim

n→∞Pn
{
X1 = yk|Hn

n
∈ [z− a, z]

}
,

whereρ(β)k

.=exp[−βyk] ρk/
∑α
j=1exp[−βyj ]ρj andβ = β(z) ∈ R is chosen so that

∑α
k=1ykρ

(β)
k = z.

Let t ≥ 2 be a positive integer. The limit in the last display leads to a natural question. Conditioned onHn/n ∈
[z − a, z], asn → ∞ what is the limiting conditional distribution of the random variablesX1, . . . , Xt , which
represent the energy levels of the firstt particles? AlthoughX1, . . . , Xt are independent with respect to the original
product measurePn, this independence is lost whenPn is replaced by the conditional distributionPn{·|Hn/n ∈
[z − a, z]}. Hence the answer given in the next theorem is somewhat surprising: with respect toPn{·|Hn/n ∈
[z − a, z]}, the limiting distribution is the product measure on�t with one-dimensional marginalsρ(β). In other
words, in the limitn → ∞ the independence ofX1, . . . , Xt is regained. The theorem leads to, and in a sense
motivates, the concept of the Gibbs state of the discrete ideal gas. We will end the section by discussing Gibbs states
for this and other statistical mechanical models. As in Theorem 3, a theorem analogous to the following would hold
if [ z− a, z] ⊂ [y1, ȳ) were replaced by [z, z+ a] ⊂ (ȳ, yα].

Theorem 4. Givent ∈ N , yk1, . . . , ykt ∈ 3, and[z− a, z] ⊂ [y1, ȳ),

lim
n→∞Pn

{
X1 = yk1, . . . , Xt = ykt |

Hn

n
∈ [z− a, z]

}
=

t∏
j=1

ρ
(β)
kj
. (7)

Comments on the proof. We considert = 2; arbitraryt ∈ N can be handled similarly. Forω ∈ �n andi, j ∈
{1, . . . , α} define

Ln,2({yi, yj }) = Ln,2(ω, {yi, yj }) .=1

n


n−1∑
j=1

δXj (ω),Xj+1(ω){yi, yj } + δXn(ω),X1(ω){yi, yj }

 .

This counts the relative frequency with which the pair{yi, yj } appears in the configuration(ω1, . . . , ωn, ω1). We
then define the empirical pair vector

Ln,2
.={Ln,2({yi, yj }), i, j = 1, . . . , α}.

This takes values in the setPα,2 consisting of allτ = {τi,j , i, j = 1, . . . , α} satisfyingτi,j ≥ 0 and
∑α
i,j=1τi,j = 1.

Suppose one can show thatτ ∗ .={ρ(β)i ρ
(β)
j , i, j = 1, . . . , α} has the property that for everyε > 0

lim
n→∞Pn

{
Ln,2 ∈ B(τ ∗, ε)|Hn

n
∈ [z− a, z]

}
= 1. (8)

Then as in Theorem 3, it will follow that

lim
n→∞Pn

{
X1 = yi, X2 = yj |Hn

n
∈ [z− a, z]

}
= ρ

(β)
i ρ

(β)
j .

As the analogous limit in part 1 of Theorem 3 is derived, Eq. (8) can be proved by showing that the sequence
{Ln,2, n ∈ N } satisfies the large deviation principle onPα,2 ([1], Section I.5) and that the rate function attains its
infimum over an appropriately defined, closed convex subset ofPα,2 at the unique pointτ ∗ (cf. Eq. (6)). The details
are omitted. h
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The quantity appearing on the right side of Eq. (7) defines a probability measurePt,β on�t which equals the
product measure with one-dimensional marginalsρ(β). In the notation of Theorem 4,

Pt,β{X1 = yk1, . . . , Xt = ykt } =
t∏

j=1

ρ
(β)
kj
.

Pt,β can be written in terms of the total energyHt(ω)
.=∑t

j=1ωj : for ω ∈ �t

Pt,β{ω} =
t∏

j=1

ρ(β){ωj } = 1

Zt(β)
exp[−βHt(ω)] Pt {ω},

wherePt {ω} = ∏t
j=1ρ{ωj } = 1/αt ,

Zt(β)
.=
∑
ω∈�t

exp[−βHt(ω)] Pt {ω} =
(

α∑
k=1

exp[−βyk] ρk
)t
,

andβ = β(z) ∈ R is the unique value ofβ for which
∑α
k=1ykρ

(β)
k = z is valid.

Theorem 4 can be motivated by a non-large deviation calculation that we present using a formal notation [8].
Sinceȳ

.=∑α
k=1ykρk = EPn{X1}, by the weak law of large numbersPn{Hn/n ∼ ȳ} ≈ 1 for largen. Since the

conditioning is on a set of probability close to 1, one expects that

lim
n→∞Pn

{
X1 = yk1, . . . , Xt = ykt |

Hn

n
∼ ȳ

}
= lim
n→∞Pn{X1 = yk1, . . . , Xt = ykt } =

t∏
j=1

ρkj

= Pt {X1 = yk1, . . . , Xt = ykt }.

Now takez 6= ȳ and for anyβ > 0 letPn,β denote the product measure on�n with one-dimensional marginals
ρ(β). A short calculation shows that for anyβ > 0

Pn

{
X1 = yk1, . . . , Xt = ykt |

Hn

n
∼ z

}
= Pn,β

{
X1 = yk1, . . . , Xt = ykt |

Hn

n
∼ z

}
.

If one picksβ = β(z) such thatz = ∑α
k=1ykρ

(β(z))
k = EPn,β(z){X1}, then by the weak law of large numbers

Pn,β(z){Hn/n ∼ z} ≈ 1, and since the conditioning is on a set of probability close to 1, again one expects that

lim
n→∞Pn

{
X1 = yk1, . . . , Xt = ykt |

Hn

n
∼ z

}
= lim
n→∞Pn,β(z)

{
X1 = yk1, . . . , Xt = ykt |

Hn

n
∼ z

}

= lim
n→∞Pn,β(z){X1 = yk1, . . . , Xt = ykt } =

t∏
j=1

ρ
(β(z))
kj

= Pt,β(z){X1 = yk1, . . . , Xt = ykt }.

This is consistent with Theorem 4.
For any subsetB of �t , Eq. (7) implies that

lim
n→∞Pn

{
(X1, . . . , Xt ) ∈ B|Hn

n
∈ [z− a, z]

}
= Pt,β{B}. (9)
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Since
∑
ω∈�t [Ht(ω)/t ] Pt,β{ω} = ∑α

k=1ykρ
(β)
k , the constraint onβ = β(z) can be expressed as a constraint on

Pt,β :

chooseβ = β(z) so that
∑
ω∈�t

[
Ht(ω)

t

]
Pt,β{ω} = z. (10)

The conditional probability on the left side of Eq. (9) is known as the Gibbs microcanonical ensemble, and the
probability on the right side of Eq. (9) as the Gibbs canonical ensemble or Gibbs state. This limit expresses the
equivalence of the two ensembles providedβ is chosen in accordance with Eq. (10). Since the Gibbs state has a
much simpler form than the Gibbs microcanonical ensemble, one usually prefers to work with the former. One can
interpretβ as a parameter that is proportional to the inverse temperature.

This discussion motivates the definition of the Gibbs states for a wide class of statistical mechanical models that
are defined in terms of an energy function. We will write the energy function, or Hamiltonian, and the corresponding
Gibbs state asHn andPn,β rather than asHt andPt,β , as we did in the preceding paragraph. The notation of Section
2 is used. ThusPn is the product measure on the set of subsets of�n

.=3n with one-dimensional marginalsρ.

Definition 2. Let Hn be a function mapping�n into R ;Hn(ω) defines the energy of the configurationω and is
known as a Hamiltonian. Letβ be a parameter proportional to the inverse temperature. Then the Gibbs canonical
ensemble, or the Gibbs state, is the probability measure

Pn,β{ω} .= 1

Zn(β)
exp[−βHn(ω)] Pn{ω} for ω ∈ �n,

whereZn(β) is the normalization factor that makesPn,β a probability measure. That is,

Zn(β)
.=
∑
ω∈�n

exp[−βHn(ω)] Pn{ω}.

We callZn(β) the partition function. ForB ⊂ �n we havePn,β{B} = ∑
ω∈BPn,β{ω}.

Noninteracting systems such as the discrete ideal gas have Hamiltonians of the formHn(ω) = ∑n
j=1Hn,j (ωj ).

The equivalence of ensembles and related questions for interacting systems have been studied by a number of
authors, including ([7], Section 7.3) [9–11].

One can also characterize Gibbs states in terms of a maximum entropy principle ([12], p. 6). Givenn ∈ N and
a HamiltonianHn, let Bn ⊂ R denote the smallest closed interval containing the range of{Hn(ω)/n, ω ∈ �n}.
For eachz ∈ intBn define0n(z) to be the set of probability measuresQ on�n satisfying the energy constraint∑
ω∈�n [Hn(ω)/n]Q{ω} = z.

Maximum Entropy Principle 3. Letn ∈ N and a HamiltonianHn : �n 7→ R be given. The following conclusions
hold:
1. For eachz ∈ intBn there exists a uniqueβ = β(z) ∈ R such that

∑
ω∈�n [Hn(ω)/n] Pn,β{ω} = z; i.e., such

thatPn,β ∈ 0n(z).
2. The relative entropyIPn attains its infimum over0n(z) at the unique measurePn,β; IPn(Pn,β) = −n(βz +
c(−β)) = nIρ(ρ

β), wherec(r)
.=log(

∑α
k=1exp[ryk]ρk).

Part 1 can be proved by a calculation similar to that given after the statement of Theorem 3 while part 2 can be
proved like Proposition 1. We leave the details to the reader.

In the next section we formulate the general concept of a large deviation principle. Subsequent sections will apply
the theory of large deviations to study interacting systems in statistical mechanics.
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6. Definition of the Large Deviation Principle

In Theorem 2 we formulated Sanov’s Theorem, which is the large deviation principle for the empirical vectors
{Ln} on the spacePα of probability vectors inRα. Applications of the theory of large deviations to models in
statistical mechanics require large deviation principles in much more general settings. As we will see in the next
section, analyzing the Curie–Weiss model of ferromagnetism involves a large deviation principle on the closed
interval [−1,1] for the sample means of i.i.d. random variables. Analyzing the Ising model in dimensionsd ≥ 2
is much more complicated. It involves a large deviation principle on the space of translation invariant probability
measures on{−1,1}Zd

([13], Section 11). As we will see in Section 9, treating models of two-dimensional turbulence
involves a large deviation principle on the space of probability measures onT 2 × Y, whereT 2 is the unit torus in
R2 andY is a compact subset ofR .

In order to define the general concept of a large deviation principle, we need some notation. First, for eachn ∈ N

let (�n,Fn,Qn) be a probability space. Thus�n is a set of points,Fn is aσ -algebra of subsets of�n, andQn is a
probability measure onFn. An example is given by the basic model in Section 2, where�n

.=3n = {y1, y2, . . . , yα}n,
Fn is the set of all subsets of�n, andQn is the product measure with one-dimensional marginalsρ.

Second, letχ be a complete separable metric space or, as it is often called, a Polish space. Elementary examples
areX

.=R d for d ∈ N ;X .=Pα, the set of probability vectors inRα; and in the notation of the basic probabilistic
model in Section 2,X equal to the closed bounded interval [y1, yα]. A class of Polish spaces arising naturally in
applications is obtained by taking a Polish spaceY and considering the spaceP(Y) of probability measures on
(the Borel subsets of)Y. We say that a sequence{5n, n ∈ N } in P(Y) converges weakly to5 ∈ P(Y), and write
5n ⇒ 5, if

∫
f d5n → ∫

f d5 for all bounded continuous functionsf mappingY into R . A fundamental fact is
that there exists a metricm onP(Y) such that5n ⇒ 5 if and only ifm(5,5n) → 0 andP(Y) is a Polish space
with respect tom ([14], Section 3.1).

Third, for eachn ∈ N let Yn be a random variable mapping�n intoX . For example, withX
.=Pα let Yn

.=Ln, or
with X

.=[y1, yα] let Yn
.=∑n

j=1Xj/n, whereXj(ω)
.=ωj for ω ∈ �n .=3n.

Finally, letI be a function mapping the Polish spaceX into [0,∞]. I is called a rate function ifI has compact
level sets; i.e., for allM < ∞ {x ∈ X : I (x) ≤ M} is compact. This technical regularity condition implies thatI

is lower semicontinuous; ifX is compact, then the lower semicontinuity ofI implies thatI has compact level sets.
For any subsetA of X we defineI (A)

.=inf x∈AI (x). WhenX
.=Pα, an example of a rate function is the relative

entropyIρ with respect toρ; whenX
.=[y1, yα], any continuous functionI function mapping [y1, yα] into [0,∞)

is a rate function.

Definition 3 (Large deviation principle). Let{(�n,Fn, Pn), n ∈ N } be a sequence of probability spaces,X a Polish
space,{Yn, n ∈ N } a sequence of random variables such thatYn maps�n intoX , andI a rate function onX . Then
{Yn} satisfies the large deviation principle onX with rate functionI if for any closed subsetF of X

lim sup
n→∞

1

n
logQn{Yn ∈ F } ≤ −I (F )

and for any open subsetG of X

lim inf
n→∞

1

n
logQn{Yn ∈ G} ≥ −I (G).

If {Yn} satisfies the large deviation principle with rate functionI , then we summarize this by the formal notation

Qn{Yn ∈ dx} ≈ exp[−nI (x)] dx.
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Evaluating the limit superior in Definition 3 forF = X and the limit inferior forG = X yieldsI (X ) = 0, and
sinceI has compact level sets, the set ofx ∈ X for whichI (x) = 0 is nonempty and compact. The following result
generalizes Corollary 2.

Theorem 5. Suppose that{Yn, n ∈ N } satisfies the large deviation principle on the Polish spaceX with rate
functionI . DefineE to be the nonempty, compact set ofx ∈ X for whichI (x) = 0 and letA be a Borel subset of
X such thatĀ ∩ E = ∅. ThenI (Ā) > 0 and for someC < ∞

Qn{Yn ∈ A} ≤ Cexp[−nI (Ā)/2] → 0 as n → ∞.

For application in the next section, we state a special case of Cramér’s Theorem, which is the large deviation
principle for the sample means of i.i.d. random variables.

Theorem 6(Craḿer’s Theorem).In the basic probability model of Section2, let3
.={−1,1} and letρ

.=(1/2)δ−1+
(1/2)δ1. For ω ∈ �n defineSn(ω)

.=∑n
j=1ωj . Then the sequence of sample means{Sn/n, n ∈ N } satisfies the large

deviation principle on[−1,1] with rate function

I (x)
.=1

2(1 − x)log(1 − x)+ 1
2(1 + x)log(1 + x).

This theorem is easy to motivate using the formal notation of Theorem 1. For anyx ∈ [−1,1], Sn(ω)/n ∼ x if
and only if approximately(n/2)(1− x) of theωj ’s equal−1 and approximately(n/2)(1+ x) of theωj ’s equal 1.
Hence

Pn

{
Sn

n
∼ x

}
≈ Pn{Ln(−1) = 1

2(1 − x), Ln(1) = 1
2(1 + x)} ≈ exp[−nIρ(1

2(1 − x), 1
2(1 + x))]

= exp[−nI (x)].
The book [7] presents Craḿer’s Theorem first in the setting ofR d and then in the setting of a Polish space.

For application in Section 9, we state a general version of Sanov’s Theorem, which gives the large deviation
principle for the sequence of empirical measures of i.i.d. random variables. Let(�,F, P ) be a probability space,
Y a Polish space,ρ a probability measure onY, and{Xj , j ∈ N } a sequence of i.i.d. random variables mapping
� into Y and having the common distributionρ. Forω ∈ � andA any Borel subset ofY we define the empirical
measure

Ln(A) = Ln(ω,A)
.=1

n

n∑
j=1

δXj (ω){A},

where fory ∈ Y δy{A} equals 1 ify ∈ A and 0 ify /∈ A. For eachωLn(ω, ·) is a probability measure onY. Hence
the sequence{Ln, n ∈ N } takes values in the Polish spaceP(Y).

Theorem 7 (Sanov’s Theorem).The sequence{Ln, n ∈ N } satisfies the large deviation principle onP(Y) with
rate function given by the relative entropy with respect toρ. For γ ∈ P(Y) this quantity is defined by

Iρ(γ )
.=
{ ∫

Y (log(dγ /dρ)) dγ if γ � ρ

∞ otherwise.

This theorem is proved, for example, in ([7], Section 6.2) and in ([15], Ch. 2). If the support ofρ is a finite set
3 ⊂ R , then Theorem 7 reduces to Theorem 2.

The following concept will be useful in the analysis of statistical mechanical models.

Definition 4 (Laplace Principle). Let{(�n,Fn, Pn), n ∈ N } be a sequence of probability spaces,X a Polish space,
{Yn, n ∈ N } a sequence of random variables such thatYn maps�n intoX , andI a rate function onX . Then{Yn}



122 R.S. Ellis / Physica D 133 (1999) 106–136

satisfies the Laplace principle onX with rate functionI if for all bounded continuous functionsf mappingX
into R

lim
n→∞

1

n
logEQn{exp[nf (Yn)]} = lim

n→∞
1

n

∫
X

exp[nf (x)]Qn{Yn ∈ dx} = sup
x∈X

{f (x)− I (x)}.

Suppose that{Yn} satisfies the large deviation principle onX with rate functionI . Then substitutingQn{Yn ∈
dx} ≈ exp[−nI (x)] dx gives

1

n
logEQn{exp[nf (Yn)]} = 1

n
log
∫
X

exp[nf (x)]Qn{Yn ∈ dx} ≈ 1

n
log
∫
X

exp[nf (x)]exp[−nI (x)] dx.

By analogy with Laplace’s method onR , the main contribution to the last integral should come from the largest
value of the integrand, and thus the following limit should hold:

1

n
logEQn{exp[nf (Yn)]} = sup

x∈X
{f (x)− I (x)}.

Hence it is plausible that{Yn} satisfies the Laplace principle with rate functionI . In fact, it is not difficult to prove
that {Yn} satisfies the large deviation principle onX with rate functionI if and only if {Yn} satisfies the Laplace
principle onX with rate functionI ([15], Theorems 1.2.1 and 1.2.3). As we will see in the next section, where the
Curie–Weiss model is studied, the Laplace principle gives a variational formula for the specific Gibbs free energy.

7. The Curie–Weiss model of ferromagnetism

The Curie–Weiss model of ferromagnetism is one of the simplest examples of an interacting system in statistical
mechanics. Using the theory of large deviations to analyze it suggests how one can apply the theory to analyze much
more complicated models. The Curie–Weiss model is a spin system on the configuration spaces�n

.={−1,1}n;
the value−1 represents ‘spin-down’ and the value 1 ‘spin-up’. Letρ

.=(1/2)δ−1 + (1/2)δ1 and letPn denote the
product measure on�n with one-dimensional marginalsρ. ThusPn{ω} = 1/2n for each configurationω = {ωi, i =
1, . . . , n} ∈ �n. The Hamiltonian, or energy, of a configurationω is defined by

Hn(ω)
.= − 1

2n

n∑
i,j=1

ωiωj = −n
2


1

n

n∑
j=1

ωj




2

, (11)

and the probability of a configuration corresponding to inverse temperatureβ > 0 is defined by the Gibbs state

Pn,β{ω} .= 1

Zn(β)
exp[−βHn(ω)] Pn{ω},

whereZn(β) is the partition function

Zn(β)
.=
∫
�n

exp[−βHn(ω)] Pn(dω) =
∑
ω∈�n

exp[−βHn(ω)] 1

2n
.

Pn,β models a ferromagnet in the sense that the maximum ofPn,β{ω} overω ∈ �n occurs at the two configurations
having all coordinatesωi equal to−1 or all coordinates equal to 1. Furthermore, asβ → ∞ all the mass ofPn,β
concentrates on these two configurations. The Curie–Weiss model is often used as a mean-field approximation to
the much more complicated Ising model and related ferromagnetic models ([1], Section V.9).



R.S. Ellis / Physica D 133 (1999) 106–136 123

A distinguishing feature of the Curie–Weiss model is its phase transition. Namely, the alignment effects incor-
porated in the Gibbs statesPn,β persist in the limitn → ∞. This is most easily seen by evaluating then → ∞
limit of the distributionsPn,β{Sn/n ∈ dx}, whereSn(ω)/n equals the spin per site

∑n
j=1ωj/n. We will see that

for β ≤ 1 this limit acts like the classical weak law of large numbers, concentrating on the value 0. However, for
β > 1 the analogy with the classical law of large numbers breaks down; the alignment effects are so strong that the
limiting Pn,β -distribution ofSn/n concentrates on the two points±m(β) for somem(β) ∈ (0,1). The analysis of
the Curie–Weiss model to be presented below can be easily modified to handle an external magnetic fieldh. The
resulting probabilistic description of the phase transition yields the predictions of mean field theory ([1], Section
V.9) and ([12], Section 3.2).

We calculate then → ∞ limit of Pn,β{Sn/n ∈ dx} by establishing a large deviation principle for the spin per
site with respect toPn,β . For eachn Sn/n takes values in [−1,1]. By the equivalence between the Laplace principle
and the large deviation principle mentioned at the end of the previous section, it suffices to find a rate functionIβ

on [−1,1] such that for any continuous functionf mapping [−1,1] into R

lim
n→∞

1

n
logEPn,β

{
exp

[
nf

(
Sn

n

)]}
= sup
x∈[−1,1]

{f (x)− Iβ(x)}.

SubstitutingHn(ω) = −(n/2)(Sn/n)2 gives

1

n
logEPn,β

{
exp

[
nf

(
Sn

n

)]}
= 1

Zn(β)

∫
�n

exp

[
nf

(
Sn

n

)
+ n

(
β

2

)(
Sn

n

)2
]
Pn(dω)

= 1

Zn(β)

∫
[−1,1]

exp

[
nf (x)+ n

(
β

2

)
x2
]
Pn

{
Sn

n
∈ dx

}
. (12)

Noticing that

Zn(β) =
∫
�n

exp

[
n

(
β

2

)(
Sn

n

)2
]
Pn(dω) =

∫
[−1,1]

exp

[
n

(
β

2

)
x2
]
Pn

{
Sn

n
∈ dx

}
,

we apply Craḿer’s Theorem 6 twice, in the equivalent form of the Laplace principle. Thus

lim
n→∞

1

n
logZn(β) = sup

x∈[−1,1]

{(
β

2

)
x2 − I (x)

}
(13)

and

lim
n→∞

1

n
log
∫

[−1,1]
exp

[
nf (x)+ n

(
β

2

)
x2
]
Pn

{
Sn

n
∈ dx

}
= sup
x∈[−1,1]

{
f (x)+

(
β

2

)
x2 − I (x)

}
, (14)

whereI (x)
.=(1/2)(1 − x)log(1 − x)+ (1/2)(1 + x)log(1 + x). Forx ∈ [−1,1] define

Iβ(x)
.=I (x)−

(
β

2

)
x2 − inf

y∈[−1,1]

{
I (y)−

(
β

2

)
y2
}
. (15)

Equations (13) and (14) give then → ∞ limit of Eq. (12):

lim
n→∞

1

n
logEPn,β

{
exp

[
nf

(
Sn

n

)]}
= sup
x∈[−1,1]

{f (x)− Iβ(x)}.

We conclude that with respect to{Pn,β} the sequence{Sn/n} satisfies the Laplace principle on [−1,1], and thus the
large deviation principle, with rate functionIβ .
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The limiting behavior of the distributionsPn,β{Sn/n ∈ dx} is now determined by examining whereIβ attains its
infimum of 0 ([1], Section IV.4). Infimizing pointsx∗ satisfyI ′

β(x
∗) = 0 orI ′(x∗) = βx∗. SinceI ′′(0) = 1 andI ′ is

concave on [−1,0], convex on [0,1], for 0< β ≤ 1 the only solution to this equation isx∗ = 0. Forβ > 1 there are
three solutions 0,m(β),−m(β), where 0< m(β) < 1; of these, 0 is a local maximum and±m(β) are the infimizers.
The functionm(β) is monotonically increasing on(1,∞); m(β) → 0 asβ → 1+ andm(β) → 1 asβ → ∞. The
equationI ′(x∗) = βx∗ is equivalent to the well known mean field equationx∗ = (I ′)−1(βx∗) = tanh(βx∗) ([1],
Section V.9) and ([12], Section 3.2).

With Qn
.=Pn,β andYn

.=Sn/n, we now apply Theorem 5 for 0< β ≤ 1 to any closed subsetA ⊂ [−1,1] that
does not contain 0 and forβ > 1 to any closed subsetA ⊂ [−1,1] that does not contain±m(β). SinceIβ(Ā) > 0
andPn,β{Sn/n ∈ A} ≤ Cexp[−nIβ(Ā)/2] → 0 asn → ∞, we are led to the following weak limits:

Pn,β

{
1

n

n∑
i=1

ωi ∈ dx

}
⇒
{
δ0 if 0 < β ≤ 1
(1/2)δm(β) + (1/2)δ−m(β) if β > 1.

(16)

We callm(β) the spontaneous magnetization for the Curie–Weiss model andβc = 1 the critical inverse temperature
([1], Section IV.4).

For eachβ > 0 we defineEβ
.={x ∈ [−1,1] : Iβ(x) = 0}; thus,Eβ

.={0} for 0 < β ≤ 1 andEβ
.={±m(β)}

for β > 1. The limit (16) justifies callingEβ the set of equilibrium macrostates for the spin per siteSn/n in the
Curie–Weiss model. It is not difficult to show that pointsx∗ ∈ Eβ have an equivalent characterization in terms of a
maximum entropy principle. Because of the relatively simple nature of the model, this maximum entropy principle
takes a rather trivial form. The details are omitted.

Before leaving the Curie–Weiss model, there are several crucial points that should be emphasized. The first is
to understand what makes possible the large deviation analysis of the model. In Eq. (11) we write the Hamil-
tonian as a quadratic function of the spin per siteSn/n, which by Craḿer’s Theorem 6 satisfies the large de-
viation principle on [−1,1] with respect to the product measuresPn. The equivalent Laplace principle allows
us to convert this large deviation principle into a large deviation principle with respect to the Gibbs statesPn,β .
The form of the rate functionIβ allows us to complete the analysis. As we will see in the next section, this
insight is fundamental in understanding how the theory of large deviations can be applied to more complicated
models.

The second crucial point involves the variational formula derived in Eq. (13). IfZn(β) is a partition function of a
statistical mechanical model on the configuration space�n = {−1,1}n, then(−1/β) times limn→∞(1/n)logZn(β)
defines a quantity known as the specific Gibbs free energy. There is an analogous definition for models on other
configuration spaces. A general statistical mechanical principle characterizes the set of equilibrium macrostates
as those that give the extremum in the variational formula for the specific Gibbs free energy. In the case of the
Curie–Weiss model, this variational formula is given in Eq. (13);x∗ gives the supremum of(β/2)x2 − I (x) over
[−1,1] if and only if Iβ(x∗) = 0 = inf x∈[−1,1]Iβ(x). This holds if and only ifx∗ ∈ Eβ . Our large deviation analysis
of the phase transition in the Curie–Weiss model has the attractive feature that, rather than appeal to a general
statistical mechanical principle, it directly motivates the physical importance ofEβ . This set is the support of the
n → ∞ limit of the distributionsPn,β{Sn/n ∈ dx}. As we will see in the next section, an analogous fact is true for
a large class of statistical mechanical models (Theorem 9).

The third crucial point is related to the second. The large deviation analysis of the Curie–Weiss model yields the
limiting behavior of thePn,β -distributions ofSn/n. This limit corresponds to the classical weak law of large numbers
for the sample means of i.i.d. random variables and suggests examining the analogues of other classical limit results
such as the central limit theorem. Such limit theorems are derived and their statistical mechanical implications are
explained in ([1], Section V.9) and in [16–18]. Related work has been done for the Curie–Weiss–Potts model [19,20]
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as well as for the Ising and other models. For the latter models, refined large deviations at the surface level have
been studied; see ([7], p. 339) for references.

8. A general approach to the large deviation analysis of models in statistical mechanics

By abstracting the calculations in the last section, we can give a general approach to the large deviation analysis
of models in statistical mechanics. This approach will be applied in the next section to two-dimensional turbulence.
We consider a class of models that are defined in terms of the following data.
• A sequence of probability spaces{(�n,Fn, Pn), n ∈ N }; {�n} are the configuration spaces.
• For eachn ∈ N the HamiltonianHn(ω) of ω ∈ �n; Hn is a bounded measurable function mapping�n into R .
• A sequence of positive scaling constants{an, n ∈ N } such thatan → ∞.

In terms of these quantities we define for eachn ∈ N , β ∈ R , and setB ∈ Fn the partition function

Zn(β)
.=
∫
�n

exp[−βHn(ω)]Pn(dω),

which is well defined and finite, and the Gibbs state

Pn,β{B} .= 1

Zn(β)

∫
B

exp[−βHn(ω)]Pn(dω).

Although for spin systems one usually takesβ > 0, in generalβ ∈ R is allowed; for example, negative values ofβ
arise naturally in the study of two-dimensional turbulence. Forβ ∈ R we define

ϕ(β)
.= lim
n→∞

1

an
logZn(β)

if the limit exists and is nontrivial. The function−β−1ϕ(β) is the specific Gibbs free energy for the model. As in
the Curie–Weiss model, one of our goals is to expressϕ(β) as a variational formula of the form

ϕ(β) = sup
x∈X

{−βH̃ (x)− I (x)} = − inf
x∈X

{βH̃ (x)+ I (x)}, (17)

whereX is some Polish space,̃H is a bounded continuous function mappingX into R , andI is a rate function on
X . We would also like to use large deviation methodology to interpret probabilistically the pointsx∗ ∈ X that give
the extremum in such variational formulas.

Before continuing with the general analysis, we recall how we proceeded in the case of the Curie–Weiss model.
For that model�n = {−1,1}n,Fn is the set of subsets of�n, andPn is the product measure with one-dimensional
marginals(1/2)δ−1 + (1/2)δ1.Hn is defined in Eq. (11), andϕ(β) is expressed in terms of the variational formula
(13). In order to derive this formula as well as the large deviation principle for{Sn/n} with respect to the Gibbs
states, we rewroteHn as a quadratic function ofSn/n and used the Laplace principle for{Sn/n} given by Craḿer’s
Theorem 6.

Numerous other models can be treated analogously. For example, the Curie–Weiss–Potts model of ferromagnetism
is a spin system on the configuration spaces�n

.=3n, where3
.={1,2, . . . , q} andq ≥ 3; Fn is the set of subsets

of �n; andPn is the product measure with one-dimensional marginals(1/q)
∑q

i=1δi . The HamiltonianHn for the
model equals−(1/2)〈Ln,Ln〉, where〈·, ·〉 denotes the inner product onR q andLn is the empirical vector on3.
The elementary form of Sanov’s Theorem given in Theorem 2 for the empirical vectors{Ln} allows one to derive a
variational formula forϕ(β) as in Eq. (17) as well as a large deviation principle for{Ln} with respect to the Gibbs
states ([13], Section 10).
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Although much more complicated, the Ising model onZD,D ≥ 2, is also amenable to a large deviation analysis.
Let1n be the hypercube inZD consisting of sitesi = (i1, . . . , iD)each coordinate of which satisfies 1≤ ij ≤ n;1n
containsnD points. The Ising model is a spin system on the configuration spaces�n consisting ofω = {ωi, i ∈ 1n}
such that eachωi ∈ {−1,1}. We write�n

.={−1,1}1n . The scaling constantsan equal the number of sites in1n;
thusan

.=nD. For the Ising model,Fn is the set of subsets of�n andPn is the product measure with one-dimensional
marginals(1/2)δ−1 + (1/2)δ1. The HamiltonianHn is a sum over nearest neighbor pairs in1n. Up to a small error
as in Eq. (20), one rewritesHn in terms of an infinite dimensional generalization of the empirical measure known
as the empirical field. Using the large deviation principle for the latter with respect to the product measures{Pn}
derived in either of the papers [21,22], one expressesϕ(β) in terms of a variational formula as in Eq. (17) and
derives a large deviation principle for the empirical fields with respect to the Gibbs states. The argument is outlined
in ([13], Section 11).

This discussion points the way to a general approach. First, we update two definitions given in Section 6. Let
{(�n,Fn,Qn), n ∈ N } be a sequence of probability spaces,X a Polish space,{Yn, n ∈ N } a sequence of random
variables such thatYn maps�n intoX , andI a rate function onX . Then{Yn} is said to satisfy the large deviation
principle onX with scaling constants{an} and rate functionI if for any closed subsetF of X the large deviation
upper bound

lim sup
n→∞

1

an
logQn{Yn ∈ F } ≤ −I (F ) (18)

is valid and for any open subsetG of X the large deviation lower bound

lim inf
n→∞

1

an
logQn{Yn ∈ G} ≥ −I (G) (19)

is valid. {Yn} is said to satisfy the Laplace principle onX with scaling constants{an} and rate functionI if for all
bounded continuous functionsf mappingX into R

lim
n→∞

1

an
logEQn{exp[anf (Yn)]} = lim

n→∞
1

an

∫
X

exp[anf (x)]Qn{Yn ∈ dx} = sup
x∈X

{f (x)− I (x)}.

As pointed out in ([15], Theorems 1.2.1 and 1.2.3),{Yn} satisfies the large deviation principle with scaling constants
{an} and rate functionI if and only if {Yn} satisfies the Laplace principle with scaling constants{an} and rate
functionI .

As we will see, a large deviation analysis of the general model is possible provided the following can be determined.
• Hidden space.This is a Polish spaceX .
• Hidden process.This is a sequence{Yn, n ∈ N }, where for eachn ∈ N , Yn is a random variable mapping�n into
X .

• Hamiltonian representation function.This is a bounded continuous functioñH mappingX into R such that for
eachn ∈ N

Hn(ω) = anH̃ (Yn(ω))+ o(an) uniformly for ω ∈ �n; (20)

i.e.,

lim
n→∞ sup

ω∈�n

1

an
|Hn(ω)− anH̃ (Yn(ω))| = 0.

• Large deviation principle for the hidden process.There exists a rate functionI mappingX into [0,∞] such that
with respect to{Pn} the sequence{Yn} satisfies the large deviation principle onX , or equivalently the Laplace
principle onX , with scaling constants{an} and rate functionI .
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For example, in the case of the Curie–Weiss modelan equalsn,X equals [−1,1],Yn equals the spin per siteSn/n,
and forx ∈ [−1,1] the Hamiltonian representation function is given byH̃ (x)

.= − (1/2)x2. Equation (20) holds
without any error term; i.e.,Hn(ω) = nH̃ (Yn). In the case of the Curie–Weiss–Potts model,an equalsn, X equals
Pq , Yn equalsLn, and forγ ∈ Pq the Hamiltonian representation function is given byH̃ (γ )

.= − (1/2)〈γ, γ 〉. As
in the Curie–Weiss model, Eq. (20) holds without any error term. In the case of the Ising model onZD, an equals
nD, the hidden process is the sequence of empirical fields on�n

.={−1,1}1n , and the hidden space is the space of
translation invariant probability measures on{−1,1}Zd

. The form of the Hamiltonian representation function is
given in ([13], Section 11); Eq. (20) is valid with an error term that represents boundary effects. While for numerous
other models the hidden space, the hidden process, and the Hamiltonian representation function can be identified,
in general it is not obvious how to determine them. This explains our choice of the term ‘hidden’.

We now return to the general case. The large deviation analysis of the general model is summarized in the next
theorem. Part 1 states a variational formula for the specific Gibbs free energy and part 2 the large deviation principle
for the hidden process with respect to the sequence of Gibbs states. Part 3 describes probabilistically the setEβ of
equilibrium macrostates, which is the set of points at which the rate function in part 2 attains its infimum of 0.

Theorem 8. We assume that there exists a hidden spaceX , a hidden process{Yn, n ∈ N }, and a Hamiltonian
representation functioñH and that with respect to{Pn} the hidden process satisfies the large deviation principle
onX with scaling constants{an} and some rate functionI . For eachβ ∈ R the following conclusions hold,
1. ϕ(β)

.=limn→∞(1/an)logZn(β) exists and is given by

ϕ(β) = − inf
x∈X

{βH̃ (x)+ I (x)}.

2. With respect to the Gibbs states{Pn,β} the hidden process{Yn} satisfies the large deviation principle onX with
scaling constants{an} and rate function

Iβ(x)
.=I (x)+ βH̃ (x)− inf

y∈X
{I (y)+ βH̃ (y)}.

3. We define the set of equilibrium macrostates

Eβ
.={x ∈ X : Iβ(x) = 0}.

ThenEβ is a nonempty, compact subset ofX . In addition, ifA is a Borel subset ofX such thatĀ ∩ Eβ = ∅,
thenIβ(Ā) > 0 and for someC < ∞

Pn,β{Yn ∈ A} ≤ Cexp

[
−nIβ(Ā)

2

]
→ 0 as n → ∞.

Proof. The proofs of parts 1 and 2 follow the similar calculations for the Curie–Weiss model once we take into
account the error betweenHn andanH̃ (Yn) expressed in Eq. (20).
1. By Eq. (20)∣∣∣∣ 1

an
logZn(β)− 1

an
log
∫
�n

exp[−βanH̃ (Yn)] dPn

∣∣∣∣
=
∣∣∣∣ 1

an
log
∫
�n

exp[−βHn] dPn − 1

an
log
∫
�n

exp[−βanH̃ (Yn)] dPn

∣∣∣∣
≤ |β| 1

an
sup
ω∈�n

|Hn(ω)− anH̃ (Yn(ω))| → 0 as n → ∞.
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SinceH̃ is a bounded continuous function mappingX into R , the Laplace principle satisfied by{Yn} with
respect to{Pn} yields part 1:

lim
n→∞

1

an
logZn(β) = lim

n→∞
1

an
log
∫
�n

exp[−βanH̃ (Yn)] dPn = − inf
x∈X

{βH̃ (x)+ I (x)}.

2. We proceed as in the proof of part 1, but now withPn,β replacingPn. For any bounded continuous functionf
mappingX into R , again Eq. (20) and the Laplace principle satisfied by{Yn} with respect to{Pn} yield

lim
n→∞

1

an
log
∫
�n

exp[anf (Yn)] dPn,β = lim
n→∞

1

an
log
∫
�n

exp[anf (Yn)− βHn] dPn − lim
n→∞

1

an
logZn(β)

= lim
n→∞

1

an
log
∫
�n

exp[an(f (Yn)− βH̃ (Yn))] dPn − lim
n→∞

1

an
logZn(β)

= sup
x∈X

{f (x)− βH̃ (x)− I (x)} + inf
x∈X

{βH̃ (x)+ I (x)}
= sup
x∈X

{f (x)− Iβ(x)}.

By hypothesis,I has compact level sets and̃H is bounded and continuous. ThusIβ has compact level sets. Since
Iβ mapsX into [0,∞], Iβ is a rate function. We conclude that with respect to{Pn,β} the sequence{Yn} satisfies
the Laplace principle, and thus the large deviation principle, with scaling constants{an} and rate functionIβ .

3. As pointed out before Theorem 5, since the infimum ofIβ overX equals 0,Eβ is the set of minimum points
of Iβ overX and is nonempty and compact. IfĀ ∩ Eβ = ∅, then for eachx ∈ Ā Iβ(x) > 0. SinceIβ is a rate
function, it follows thatIβ(Ā) > 0. The large deviation upper bound completes the proof of part 3. h

Part 3 of the theorem can be regarded as a concentration property of thePn,β -distributions ofYn which justifies
calling Eβ the set of equilibrium macrostates. With respect to these distributions, the probability of any Borel
setA whose closure has empty intersection withEβ goes to 0 exponentially fast withan. This large deviation
characterization of the equilibrium macrostates is an attractive feature of our approach.

The concentration property of thePn,β -distributions ofYn as expressed in part 3 of the theorem has a refinement
that arises in our study of the Curie–Weiss model. From Section 7 we recall thatEβ = {0} for 0 < β ≤ 1 and
Eβ = {±m(β)} for β > 1, wherem(β) is the spontaneous magnetization. According to Eq. (16), for allβ > 0 the
weak limit ofPn,β{Sn/n ∈ dx} is concentrated onEβ . While in the case of the general model treated in the present
section one should not expect such a precise formulation, the next theorem gives considerable information, relating
weak limits of subsequences ofPn,β{Yn ∈ dx} to the set of equilibrium macrostatesEβ . For example, if one knows
thatEβ consists of a unique point̃x, then it follows that the entire sequence{Pn,β{Yn ∈ dx}, n ∈ N } converges
weakly toδx̃ . This situation corresponds to the absence of a phase transition. The proof of the theorem is technical
and is omitted.

Theorem 9. We fixβ ∈ R and use the notation of Theorem8. If Eβ consists of a unique point̃x, thenPn,β{Yn ∈
dx} ⇒ δx̃ . If Eβ does not consist of a unique point, then any subsequence of{Pn,β{Yn ∈ dx}, n ∈ N } has a
subsubsequence converging weakly to a probability measure5β onX that is concentrated onEβ ; i.e.,5β{(Eβ)c} =
0.

In the next section we apply the general large deviation procedure just presented to the analysis of models of
two-dimensional turbulence.
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9. Maximum entropy principles in two-dimensional turbulence

This section presents an overview of recent research, in which Gibbs states are used to predict the large-scale,
long-lived order of coherent vortices that persist amid the turbulent fluctuations of the vorticity field in two dimen-
sions [4]. This is done by applying a statistical equilibrium theory of the two-dimensional Euler equations, which
govern the motion of an inviscid, incompressible fluid. As shown in [23,24], these equations are reducible to the
vorticity transport equations

∂ω

∂t
+ ∂ω

∂x1

∂ψ

∂x2
− ∂ω

∂x2

∂ψ

∂x1
= 0 and −1ψ = ω, (21)

in whichω is the vorticity,ψ is the stream function, and1 = ∂2/∂x2
1 + ∂/∂x2

2 denotes the Laplacian operator on
R2. The two-dimensionality of the flow means that these quantities are related to the velocity fieldv = (v1, v2,0)
according to(0,0, ω) = curlv andv = curl(0,0, ψ). All of these fields depend upon the time variablet ∈ [0,∞)

and the space variablex = (x1, x2), which runs through a bounded domain inR2. Throughout this section we
assume that this domain equals the unit torusT 2 = [0,1) × [0,1), and we impose doubly periodic boundary
conditions on all the flow quantities.

The governing Eq. (21) can also be expressed as a single equation for the scalar vorticity fieldω = ω(x, t). The
periodicity of the velocity field implies that

∫
T 2ω dx = 0. With this restriction on its domain, the Green’s operator

G = (−1)−1 takingω intoψ with
∫
T 2ψ dx = 0 is well-defined. More explicitly,G is the integral operator

ψ(x) = Gω(x) =
∫
T 2
g(x − x′)ω(x′)dx′, (22)

whereg is the Green’s function defined by the Fourier series

g(x − x′) .=
∑

06=z∈Z2

|2πz|−2e2π i〈z,(x−x′)〉. (23)

Consequently, Eq. (21) can be considered as an equation inω alone.
Even though the initial value problem for Eq. (21) is known to be well-posed for weak solutions whenever the

initial dataω0 = ω(·,0) belongs toL∞(X ) [24], it is well known that this deterministic evolution does not provide
a useful description of the system over long time intervals. When one seeks to quantify the long-time behavior
of solutions, therefore, one is compelled to shift from the microscopic, or fine-grained, description inherent inω

to some kind of macroscopic, or coarse-grained, description. We will make this shift by adopting the perspective
of equilibrium statistical mechanics. That is, one views the underlying deterministic dynamics as a means of
randomizing the microstateω subject to the conditioning inherent in the conserved quantities for the governing
Eq. (21), and one takes the appropriate macrostates to be the canonical Gibbs measuresP(dω) built from these
conserved quantities. In doing so, of course, one accepts an ergodic hypothesis that equates the time averages
with canonical ensemble averages. Given this hypothesis, one hopes that these macrostates capture the long-lived,
large-scale, coherent vortex structures that persist amid the small-scale vorticity fluctuations. The characterization
of these self-organized macrostates, which are observed in simulations and physical experiments, is the ultimate
goal of the theory.

The models that we will consider build on earlier and simpler theories, the first of which was due to Onsager
[25]. Studying point vortices, he predicted that the equilibrium states with high enough energy have a negative
temperature and represent large-scale, coherent vortices. This model was further developed in the 1970’s, notably
by Montgomery and Joyce [26]. However, the point vortex model fails to incorporate all the conserved quantities
for two-dimensional ideal flow.



130 R.S. Ellis / Physica D 133 (1999) 106–136

These conserved quantities are the energy, or Hamiltonian functional, and the family of generalized enstrophies,
or Casimir functionals [24]. Expressed as a functional ofω, the kinetic energy is

H(ω)
.=1

2

∫
T 2×T 2

g(x − x′)ω(x)ω(x′)dx dx′. (24)

The so-called generalized enstrophies are the global vorticity integrals

A(ω)
.=
∫
T 2
a(ω(x))dx, (25)

wherea is an arbitrary continuous real function on the range of the vorticity. In terms of these conserved quantities,
the canonical ensemble is defined by the formal Gibbs measure

Pβ,a(dω) = Z(β, a)−1exp[−βH(ω)− A(ω)]5(dω), (26)

whereZ(β, a) is the associated partition function and5(dω) denotes some invariant product measure on some
phase space of all admissible vorticity fieldsω. Of course, this formal construction is not meaningful as it stands
due to the infinite dimensionality of such a phase space. We therefore proceed to define a sequence of lattice models
onT 2 in order to give a meaning to this formal construction.

One lattice model that respects conservation of energy and also the generalized enstrophy constraints was devel-
oped by Miller et. al. [27,28] and Robert et. al. [29,30]; we will refer to it as the Miller–Robert model. A related
model, which discretizes the continuum dynamics in a different way, was developed by Turkington [31]. These
authors use formal arguments to derive maximum entropy principles that are argued to be equivalent to variational
formulas for the equilibrium macrostates. In terms of these macrostates, coherent vortices of two-dimensional tur-
bulence can be studied. The purpose of this section is to outline how large deviation theory can be applied to give a
rigorous derivation of these variational formulas. References [4] and [31] discuss in detail the physical background.

The variational formulas will be derived for the following lattice model that includes both the Miller–Robert
model and the Turkington model as special cases. LetT 2 denote the unit torus [0,1)× [0,1)with periodic boundary
conditions and letL be a uniform lattice ofn

.=22m sitess in T 2, wherem is a positive integer. The intersite spacing
in each coordinate direction is 2−m. We make this particular choice ofn to ensure that the lattices are refined
dyadically asm increases, a property that is needed later when we study the continuum limit obtained by sending
n → ∞ along the sequencen = 22m. In correspondence with this lattice we have a dyadic partition ofT 2 into n
squares called microcells, each having area 1/n. For eachs ∈ L we denote byM(s) the unique microcell having
the sites in its lower left corner. AlthoughL andM(s) depend onn, this is not indicated in the notation.

The configuration spaces for the lattice model are the product spaces�n = Yn, whereY is a compact set inR.
Configurations in�n are denoted byζ = {ζ(s), s ∈ L}, which represents the discretized vorticity field. Letρ be
a probability measure onY and letPn denote the product measure on�n with one-dimensional marginalsρ. As
discussed in [4], the Miller–Robert model and the Turkington model differ in their choices of the compact setY
and the probability measureρ.

For ζ ∈ �n the Hamiltonian for the lattice model is defined by

Hn(ζ )
.= 1

2n2

∑
s,s′∈L

gn(s − s′)ζ(s)ζ(s′), (27)

wheregn is the lattice Green’s function defined by the finite Fourier sum

gn(s − s′) .=
∑

06=z∈L∗
|2πz|−2e2π i〈z,s−s′〉 (28)
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over the finite setL∗ .={z = (z1, z2) ∈ Z2 : −2m−1 < z1, z2 ≤ 2m−1}. Let a be any continuous function mapping
Y intoR. Forζ ∈ �n we also define functions known as the generalized enstrophies by

An,a(ζ )
.=1

n

∑
s∈L

a(ζ(s)). (29)

In terms of these quantities we define the partition function

Zn(β, a)
.=
∫
�n

exp[−βHn(ζ )− An,a(ζ )] Pn(dζ ) (30)

and the Gibbs statePn,β,a , which is the probability measure that assigns to a Borel subsetB of �n the probability

Pn,β,a{B} .= 1

Zn(β, a)

∫
B

exp[−βHn(ζ )− An,a(ζ )] Pn(dζ ). (31)

These probability measures are parametrized by the constantβ ∈ R and the functiona ∈ C(Y). The dependence of
Gibbs measures on the inverse temperatureβ is standard, while their dependence on the functiona that determines
the enstrophy functional is a novelty of this particular statistical equilibrium problem. The Miller–Robert model
and the Turkington model also differ in their choices of the parameterβ and the functiona.

The main theorem in this section applies the theory of large deviations to derive the continuum limitn → ∞ of
the lattice model just introduced. Because the interactionsgn(s − s′) in the lattice model are long-range, one must
replaceβ anda by nβ andna in order to obtain a nontrivial continuum limit [4,27,28]. Replacingβ anda by nβ
andna in the formulas for the partition function and the Gibbs state is equivalent to replacingHn andAn by nHn
andnAn and leavingβ anda unscaled. We carry out the large deviation analysis of the lattice model by applying
the general procedure specified in the preceding section, making the straightforward modifications necessary to
handle both the Hamiltonian and the generalized enstrophy. Thus, we seek a hidden space, a hidden process{Yn},
representation functions̃H andÃa for the Hamiltonian and for the generalized enstrophy, and a large deviation
principle for {Yn} with respect to{Pn}. Because of the replacement ofHn andAn by nHn andnAn, the defining
properties of the representation functions that we now present differ by a factor ofn from what appears in the
preceding section. The first marginal of a probability measureµ onT 2 ×Y is defined to be the probability measure
µ1{A} .=µ{A× Y} for Borel subsetsA of T 2.
• Hidden space.This is the spacePθ (T 2 × Y) of probability measures onT 2 × Y with first marginalθ , where
θ(dx) = dx is Lebesgue measure onT 2.

• Hidden process.For eachn ∈ N , Yn : �n 7→ Pθ (T 2 × Y) is defined by

Yn(dx × dy) = Yn(ζ,dx × dy)
.= dx ⊗

∑
s∈L

1M(s)(x)δζ(s)(dy).

Thus for Borel subsetsA of T 2 × Y

Yn{A} .=
∑
s∈L

∫
A

1M(s)(x)dx δζ(s)(dy).

Since
∑
s∈L1M(s)(x) = 1 for all x ∈ T 2, the first marginal ofYn equals dx.

• Hamiltonian representation function.̃H : Pθ (T 2 × Y) 7→ R is defined by

H̃ (µ)
.=1

2

∫
(T 2×Y)2

g(x − x′)yy′ µ(dx × dy)µ(dx′ × dy′),
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whereg(x − x′) is defined by the Fourier series
∑

06=z∈Z2|2πz|−2e2π i〈z,x−x′〉. As proved in [4],H̃ is bounded
and continuous and there existsC < ∞ such that

sup
ζ∈�n

|Hn(ζ )− H̃ (Yn(ζ, ·))| ≤ C

(
logn

n

)1/2

for all n ∈ N . (32)

• Generalized enstrophy representation function.Ãa : Pθ (T 2 × Y) 7→ R is defined by

Ãa(µ)
.=
∫
T 2×Y

a(y) µ(dx × dy).

Ãa is bounded and continuous and

An,a(ζ ) = Ãa(Yn(ζ, ·)) for all ζ ∈ �n. (33)

• Large deviation principle for the hidden process.With respect to the product measures{Pn}, {Yn} satisfies the
large deviation principle onPθ (T 2 × Y) with rate function the relative entropy

Iθ×ρ(µ)
.=
{ ∫

T 2×Y
(
log dµ

d(θ×ρ)
)

dµ if µ � θ × ρ

∞ otherwise.

We first comment on the last item. The large deviation principle for the hidden process with respect to{Pn} is far
from obvious and in fact is one of the main contributions of [4]. We will address this issue after specifying the large
deviation behavior of the model in Theorem 10. Concerning Eq. (32), sinceθ{M(s)} = 1/n, it is plausible that

H̃ (Yn(ζ, ·)) = 1

2

∑
s,s′∈L

∫
M(s)×M(s′)

g(x − x′)dx dx′ ζ(s)ζ(s′)

is a good approximation toHn(ζ )
.=[1/(2n2)]

∑
s,s′∈Lgn(s − s′)ζ(s)ζ(s′). Concerning Eq. (33), forζ ∈ �n

Ãa(Yn(ζ, ·)) =
∫
T 2×Y

a(y) Yn(ζ,dx × dy) = 1

n

∑
s∈L

a(ζ(s)) = An,a(ζ ).

The proofs of the boundedness and continuity ofÃa are straightforward.
Part 1 of Theorem 10 gives the asymptotic behavior of the scaled partition functionsZn(nβ, na), and part 2

states the large deviation principle for the hidden process{Yn} with respect to the scaled Gibbs statesPn,nβ,na . The
rate function has the familiar formIβ,a

.=Iρ×θ + βH̃ + Ã − const; the relative entropyIρ×θ arises from the large
deviation principle for{Yn} with respect to{Pn}, and the other terms arise from Eqs. (32) and (33) and the form of
Pn,nβ,na . Part 3 of the theorem gives properties of the setEβ,a of equilibrium macrostates.Eβ,a consists of measures
µ at which the rate functionIβ,a in part 2 attains its infimum of 0 overPθ (T 2 × Y). The proof of the theorem
is omitted since it is similar to the proof of Theorem 8. We also omit the analogue of Theorem 9 concerning the
relationship between weak limits of thePn,nβ,na-distributions ofYn andEβ,a .

Theorem 10. For eachβ ∈ R anda ∈ C(Y) the following conclusions hold.
1. ϕ(β, a)

.=limn→∞(1/n)logZn(nβ, na) exists and is given by the variational formula

ϕ(β, a) = − inf
µ∈Pθ (T 2×Y)

{βH̃ (µ)+ Ãa(µ)+ Iρ×θ (µ)}.
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2. With respect to the scaled Gibbs states{Pn,nβ,na}, {Yn} satisfies the large deviation principle onX with scaling
constants{n} and rate function

Iβ,a(µ)
.=Iρ×θ (µ)+ βH̃ (µ)+ Ãa(µ)− inf

ν∈Pθ (T 2×Y)
{Iρ×θ (ν)+ βH̃ (ν)+ Ãa(ν)}.

3. We define the set of equilibrium macrostates

Eβ,a
.={µ ∈ Pθ (T 2 × Y) : Iβ,a(µ) = 0}.

ThenEβ,a is a nonempty, compact subset ofPθ (T 2 ×Y). In addition, ifA is a Borel subset ofPθ (T 2 ×Y) such
that Ā ∩ Eβ,a = ∅, thenIβ,a(Ā) > 0 and for all sufficiently largen

Pn,nβ,na{Yn ∈ A} ≤ exp

[
−nIβ,a(Ā)

2

]
→ 0 as n → ∞.

The paper [4] and a sequel currently in preparation discuss the physical implications of the theorem and the
relationship between the following concepts in the context of the Miller–Robert model and the Turkington model:
µ ∈ Pθ (T 2 × Y) is an equilibrium macrostate (i.e.,µ ∈ Eβ,a) andµ satisfies a corresponding maximum entropy
principle. In the Miller–Robert model, the maximum entropy principle takes the form of minimizing the relative
entropyIθ×ρ(µ) overµ ∈ Pθ (T 2 × Y) subject to the constraints

H̃ (µ) = H(ω0) and
∫
T 2
µ(dx × ·) =

∫
T 2
δω0(x)(·)dx,

whereω0 is an initial vorticity field andH(ω0) is defined in Eq. (24). In the Turkington model, the maximum entropy
principle takes a somewhat related form in which the second constraint appearing in the Miller–Robert maximum
entropy principle is relaxed to a family of convex inequalities parametrized by points inY. Understanding for
each model the relationship between equilibrium macrostatesµ and the corresponding maximum entropy principle
allows one to identify a steady vortex flow with a given equilibrium macrostateµ. Through this identification, which
is described in [4], one demonstrates how the equilibrium macrostates capture the long-lived, large-scale, coherent
structures that persist amid the small-scale vorticity fluctuations.

We spend the rest of this section outlining how the large deviation principle is proved for the hidden process

Yn(dx × dy)
.= dx ⊗

∑
s∈L

1M(s)(x) δζ(s)(dy)

with respect to the product measures{Pn}. The proof is based on the innovative technique of approximatingYn by
a doubly indexed sequence of random measures{Wn,r} for which the large deviation principle is, at least formally,
almost obvious. This doubly indexed sequence, obtained from{Yn} by averaging over an intermediate scale, clarifies
the physical basis of the large deviation principle and reflects the multiscale nature of turbulence. A similar large
deviation principle is derived in [32,33] by an abstract approach that relies on a convex analysis argument. That
approach obscures the role of spatial coarse-graining in the large deviation behavior.

In order to defineWn,r , we recall thatL containsn = 22m sitess. For evenr < 2m we consider a regular dyadic
partition ofT 2 into 2r macrocells{Dr,k, k = 1,2, . . . ,2r}. Each macrocell containsn/2r lattice sites and is the
union ofn/2r microcellsM(s), whereM(s) contains the sites in its lower left corner. We now define

Wn,r(dx × dy) = Wn,r(ζ,dx × dy)
.=dx ⊗

2r∑
k=1

1Dr,k (x)
1

n/2r
∑
s∈Dr,k

δζ(s)(dy).
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Wn,r is obtained fromYn by replacing, for eachs ∈ Dr,k, the point massδζ(s) by the average(n/2r )−1∑
s∈Dr,k δζ(s)

over then/2r sites contained inDr,k.
We need the key fact that with respect to a suitable metricd on Pθ (T 2 × Y) d(Yn,Wn,r ) ≤ √

2/2r/2 for all
n = 22m and all evenr ∈ N satisfyingr < 2m. The proof of this approximation property uses the fact that the
diameter of each macrocellDr,k equals

√
2/2r/2 [4]. The next theorem states the two-parameter large deviation

principle for{Wn,r} with respect to the product measures{Pn}. By means of the approximation property, it is then
straightforward to show that with respect to{Pn}, {Yn} satisfies the large deviation principle with the same rate
functionIθ×ρ .

Theorem 11. With respect to the product measures{Pn}, the sequence{Wn,r} satisfies the following two-parameter
large deviation principle onPθ (T 2 × Y) with rate functionIθ×ρ : for any closed subsetF ofPθ (T 2 × Y)

lim sup
r→∞

lim sup
n→∞

1

n
logPn{Wn,r ∈ F } ≤ −Iθ×ρ(F )

and for any open subsetG ofPθ (T 2 × Y)

lim inf
r→∞ lim inf

n→∞
1

n
logPn{Wn,r ∈ G} ≥ −Iθ×ρ(G).

Our purpose in introducing the doubly indexed processWn,r is the following. The local averaging over the sets
Dr,k introduces a spatial scale that is intermediate between the macroscopic scale of the torusT 2 and the microscopic
scale of the microcellsM(s). As a result,Wn,r can be written in the form

Wn,r(dx × dy) = dx ⊗
2r∑
k=1

1Dr,k (x) Ln,r,k(dy), (34)

where

Ln,r,k(dy) = Ln,r,k(ζ,dy)
.= 1

n/2r
∑
s∈Dr,k

δζ(s)(dy).

Since eachDr,k containsn/2r lattice sitess, with respect to{Pn} the sequence{Ln,r,k, k = 1, . . . ,2r} is a family of
i.i.d. empirical measures. For eachr and eachk ∈ {1, . . . ,2r} Sanov’s Theorem 7 implies that asn → ∞ {Ln,r,k}
satisfies the large deviation principle onP(Y) with scaling constantsn/2r and rate functionIρ .

It is easy to motivate the large deviation principle for{Wn,r} stated in Theorem 11. Suppose thatµ ∈ Pθ (T 2 ×Y)
has finite relative entropy with respect toθ × ρ and has the special form

µ(dx × dy) = dx ⊗ τ(x,dy), where τ(x,dy)
.=

2r∑
k=1

1Dr,k (x) τk(dy) (35)

andτ1, . . . , τ2r are probability measures onY. The representation (34), Sanov’s Theorem, and the independence
of Ln,r,1, . . . , Ln,r,2r suggest that

lim
n→∞

1

n
logPn{Wn,r ∼ µ} = lim

n→∞
1

n
logPn{Ln,r,k ∼ τk, k = 1, . . . ,2r}

= 1

2r

2r∑
k=1

lim
n→∞

1

n/2r
logPn{Ln,r,k ∼ τk}
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≈ − 1

2r

2r∑
k=1

Iρ(τk) = −
∫
T 2
Iρ(τ (x, ·))dx

= −
∫
T 2

∫
Y

(
log

dτ(x, ·)
dρ(·) (y)

)
τ(x,dy)dx

= −
∫
T 2×Y

(
log

dµ

d(θ × ρ)
(x, y)

)
µ(dx × dy) = −Iθ×ρ(µ).

The two-parameter large deviation principle forWn,r with rate functionIθ×ρ is certainly plausible, in view of the
fact that any measureµ ∈ Pθ (T 2 × Y) can be well approximated, asr → ∞, by a sequence of measures of the
form Eq. (35) ([34], Lemma 3.2). The reader is referred to [4] for an outline of the proof of this two-parameter large
deviation principle. The large deviation principle for{Wn,r} is a special case of a large deviation principle proved
in [34] for an extensive class of random measures which includes{Wn,r} as a special case.

This completes our application of the theory of large deviations to models of two-dimensional turbulence. The
asymptotic behavior of these models is stated in Theorem 10. One of the main components of the proof is the
large deviation principle for the hidden process{Yn}, which in turn follows by approximating the hidden process by
the doubly indexed sequence{Wn,r} and proving the large deviation principle for this sequence. This proof relies
on Sanov’s Theorem, which generalizes Boltzmann’s 1877 calculation of the asymptotic behavior of multinomial
probabilities. Earlier in the paper we used the elementary form of Sanov’s Theorem stated in Theorem 2 to derive
the form of the Gibbs state for the discrete ideal gas and to motivate the version of Cramér’s Theorem needed
to analyze the Curie–Weiss model. It is hoped that both the importance of Boltzmann’s 1877 calculation and the
applicability of the theory of large deviations to problems in statistical mechanics have been amply demonstrated
in this paper. It is also hoped that the paper will inspire the reader to discover new applications.
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[21] H. Föllmer, S. Orey, Large deviations for the empirical field of a Gibbs measure, Ann. Probab. 16 (1987) 961–977.
[22] S. Olla, Large deviations for Gibbs random fields, Probab. Th. Rel. Fields 77 (1988) 343–359.
[23] A.J. Chorin, Vorticity and Turbulence, Springer, Berlin, 1994.
[24] C. Marchioro, M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Springer, New York, 1994.
[25] L. Onsager, Statistical hydrodynamics, Suppl. Nuovo Cim. 6 (1949) 279–287.
[26] D. Montgomery, G. Joyce, Statistical mechanics of negative temperature states, Phys. Fluids 17 (1974) 1139–1145.
[27] J. Miller, Statistical mechanics of Euler equations in two dimensions, Phys. Rev. Lett. 65 (1990) 2137–2140.
[28] J. Miller, P. Weichman, M.C. Cross, Statistical mechanics, Euler’s equations, and Jupiter’s red spot, Phys. Rev. A 45 (1992) 2328–2359.
[29] R. Robert, A maximum-entropy principle for two-dimensional perfect fluid dynamics, J. Stat. Phys. 65 (1991) 531–553.
[30] R. Robert, J. Sommeria, Statistical equilibrium states for two-dimensional flows, J. Fluid Mech. 229 (1991) 291–310.
[31] B. Turkington, Statistical equilibrium measures and coherent states in two-dimensional turbulence, Comm. Pure Appl. Math. (1999), in

press.
[32] J. Michel, R. Robert, Large deviations for Young measures and statistical mechanics of infinite dimensional dynamical systems with

conservation law, Comm. Math. Phys. 159 (1994) 195–215.
[33] R. Robert, Concentration et entropie pour les mesures d’Young, C. R. Acad. Sci. Paris Série I 309 (1989) 757–760.
[34] C. Boucher, R.S. Ellis, B. Turkington, Spatializing random measures: doubly indexed processes and the large deviation principle, Ann.

Probab. 27 (1999) 297–324.


