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Abstract

After presenting some basic ideas in the theory of large deviations, this paper applies the theory to a number of problems in
statistical mechanics. These include deriving the form of the Gibbs state for a discrete ideal gas; describing probabilistically
the phase transition in the Curie—Weiss model of a ferromagnet; and deriving variational formulas that describe the equilibrium
macrostates in models of two-dimensional turbulence. A general approach to the large deviation analysis of models in statistical
mechanics is also formulated. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The theory of large deviations studies the exponential decay of probabilities in certain random systems. It is
being applied to a wide range of problems in which detailed information on rare events is required. One is often
interested not only in the probability of rare events but also in the characteristic behavior of the system as the rare
event occurs. For example, in applications to queueing theory and communication systems, the rare event could
represent an overload or breakdown of the system. In this case, large deviation methodology can lead to an efficient
redesign of the system so that the overload or breakdown does not occur. In applications to statistical mechanics,
which will be the main focus of this paper, the theory of large deviations gives precise, exponential-order estimates
that are perfectly suited for asymptotic analysis.

This paper will discuss a number of topics in the theory of large deviations and several applications to statistical
mechanics, all united by the concept of relative entropy. This concept entered human culture through the first large
deviation calculation in science, carried out by Boltzmann. Stated in a modern terminology, his discovery was that
the relative entropy expresses the asymptotic behavior of multinomial probabilities. This statistical interpretation of
entropy has the following crucial physical implication. Entropy is a bridge between a microscopic level, on which
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physical systems are defined in terms of the complicated interactions among the individual constituent particles,
and a macroscopic level, on which the laws describing the behavior of the system are formulated.

Building on the work of Boltzmann, Gibbs asked a fundamental question. How can one use probability theory to
study equilibrium properties of physical systems such as an ideal gas, a ferromagnet, or a fluid? These properties
include such phenomena as phase transitions; e.g., the liquid—gas transition or spontaneous magnetization in a
ferromagnet. Another example arises in the study of freely evolving, inviscid fluids, for which one wants to describe
coherent states. These are steady, stable mean flows comprised of one or more vortices that persist amidst the
turbulent fluctuations of the vorticity field. Gibbs’s answer, which led to the development of classical equilibrium
statistical mechanics, is that one studies equilibrium properties via probability measures on configuration space
known today as Gibbs canonical ensembles or Gibbs states. For background in statistical mechanics, | recommend
[1-3], which cover a number of topics relevant to the contents of this paper.

One of our main purposes in this paper is to show the utility of the theory of large deviations by applying it to
a number of statistical mechanical models. Our applications of the theory include a derivation of the form of the
Gibbs state for a discrete ideal gas (Section 5); a probabilistic description of the phase transition in the Curie—Weiss
model of a ferromagnet in terms of the breakdown of the law of large numbers for the spin per site (Section 7); and
as an overview of recent work carried out in [4], a derivation of variational formulas that describe the equilibrium
macrostates in models of two-dimensional turbulence (Section 9). In terms of these macrostates, coherent vortices
of two-dimensional turbulence can be studied.

Boltzmann'’s calculation of the asymptotic behavior of multinomial probabilities in terms of relative entropy was
carried out in 1877 as a key component of his paper that gave a probabilistic interpretation of the Second Law of
Thermodynamics [5]. This fundamental calculation represents a revolutionary moment in human culture during
which both statistical mechanics and the theory of large deviations were born. Boltzmann’s work is put in historical
context by Everdell in his bookhe First Modernswhich traces the development of the modern consciousness in
19th and 20th century thought [6]. Chapter 3 focuses on the mathematicians of Germany in the 1870’s — namely,
Cantor, Dedekind, and Frege — who “would become the first creative thinkers in any field to look at the world in a
fully twentieth-century manner” (p. 31). Boltzmann is then presented as the man whose investigations in stochastics
and statistics made possible the work of the two other great founders of twentieth-century theoretical physics, Planck
and Einstein. “He was at the center of the change” (p. 48).

In this paper Boltzmann’s discovery of the asymptotic behavior of multinomial probabilities in terms of relative
entropy is described in Section 3 after a preliminary section that introduces a basic probabilistic model. Two
related problems are then considered: the calculation of the probabilities of a loaded die in Section 4 and the
calculation of the probabilities of the energy states of a discrete ideal gas in Section 5. The solutions of these
problems motivate the form of the Gibbs canonical ensemble. The general concept of a large deviation principle
and related ideas are presented in Section 6. In Section 7 the theory of large deviations is used to study equilibrium
properties of a basic model of ferromagnetism known as the Curie-Weiss model. This leads in Section 8 to the
formulation of a general procedure for applying the theory of large deviations to the analysis of an extensive class of
statistical mechanical models. This general procedure is then used in Section 9 along with Sanov’s Theorem, which
generalizes Boltzmann’s 1877 calculation, to derive variational formulas that describe the equilibrium macrostates
in two models of two-dimensional turbulence; namely, the well known Miller—Robert theory and a modification of
that theory recently proposed by Turkington. Because Sanov’s Theorem plays a vital role in the derivation, this final
application of the theory of large deviations brings our focus back home to Boltzmann, through whose research in
the foundations of statistical mechanics the theory was born.
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2. A basic probabilistic model

In later sections we will investigate a number of questions in the theory of large deviations in the context of a
basic probabilistic model, which we now introduce. ket 2 be an integery; < y2 < --- < y, a set ofx real

numbers, angs, p2, ... , py a set ofa positive real numbers summing to 1. We thinkat{y1, y2, ..., yo} a@s
the set of possible outcomes of a random experiment in which each individual outgdrag the probability;, of
occurring. The vectop=(p1, p2, ... , py) IS an element of the set of probability vectors

o
Pai:VERO‘17/=(V17V2~-~’VQ)ZO’ZW‘:]' '
k=1

Any vectory € P, also defines a probability measure on the set of subsetsvid

y =y(dy)=) "y by (dy),
k=1

where fory € A 8y, {y} = 1if y = y, and equals 0 otherwise. Thus BrC A, y{B} = }_, . pw. Foreachinteger
n, the configuration space farindependent repetitions of the experimer®js=A", a typical element of which is
denoted by = (w1, w2, ... , w,). For eachw € 2, we define

Pyw}=] [ ple;)

j=1
and extend this to a probability measure on the set of subsétg by defining

Pn{B}£ZP,,{w} for BcCQ,.

weB

P, is called the product measure with one-dimensional margjnal¥ith respect taP, the coordinate functions
Xj(w=w;, j=1,2,...,n, areindependent, identically distributed (i.i.d.) random variables with common distri-
bution p; that is, for any subset81, By, ... , B, of A

n n
Pwe QX eB; for j=12..,n= HPn{w € Xj(w) e Bj} = H,O{Bj}.
j=1 j=1

Example 1. Random phenomena that can be studied via this basic model include standard examples such as coin
tossing and die tossing and also include a discrete ideal gas.
1. Coin tossingln this caseA={1, 2} andp1 = pp=1/2.
2. Die tossingln this caseA={1, 2, ... , 6} and eaclp,=1/6.
3. Discrete ideal gasConsider a ‘discrete ideal gas’ consistingidflentical, noninteracting particles, each having
o equally likely energy levelsy, yo, ... , yq; in this case eaclp; equals Y«. The coordinate function¥ ;
represent the random energy levels of the molecules of the gas. The statistical independence of these random
variables reflects the fact that the molecules of the gas do not interact.

We will return to the discrete ideal gas in Section 5 after introducing some basic concepts in theory of large
deviations.
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3. Boltzmann’s discovery

In its original form Boltzmann’s discovery concerns the asymptotic behavior of multinomial coefficients. For the
purpose of applications in this paper, it is advantageous to formulate it in terms of a probabilistic quantity known
as the empirical vector. Fer € 2, andy € A define

1 n
Ly (y) = La(@, y)==) 8x;(w){y}-

n
j=1

ThusL,(w, y) equalsa™ - #{j € {1,... ,n}: w;j =y}, it counts the relative frequency with whighappears in
the configurationn. We then define the empirical vector

n

. 1
Ln = Ln(w)z(Ln(ws )’1), AR Ln(wa ya)) = ;Z(ij(w){)ﬂ}» ce 5Xj(w){yoz})-
j=1

L, takesvaluesif®,. By the lastequality it equals the sample mean of the i.i.d. random vari@Rles){y1}, . . . , 8x ;@) {ye})-
The limiting behavior of.,, is straightforward to determine. L&t || denote the Euclidean norm &¥. For any
y € Py ande > 0, we define the open ball

B(y,e)={vePu:lly —vl <e}

Since theX ; have the common distribution, for eachy, € A
1¢ 1¢
Py — EPn - =) =
EPL,(y)} = E ;Zlax,{yk} = ;Zan{X, = %} = px.
J= J=

whereE"» denotes expectation with respectig. Hence by the weak law of large numbers for the sample means
of i.i.d. random variables, for any> 0

lim P,{L, € B(p,&)} = 1. (1)
n—oo
It follows that for anyy € P, not equal tgo and for anys > 0 satisfying O< ¢ < |lp — Y|
lim Pu{L, € B(y, &)} = 0. (2)
n—oo
As we will see, Boltzmann'’s discovery implies that these probabilities converge to 0 exponentially#fagtia
exponential decay rate is given in terms of the relative entropy, which we now define.

Definition 1 (Relative entropy). Lep = (p1, ..., py) denote the probability vector iR, in terms of which the
basic probabilistic model is defined. The relative entropy &f P, with respect tq is defined by

o
. Yk
Ip(y)=§ yilog—.
k=1 Pk

Several properties of the relative entropy are given in the next lemma.

Lemma 1. For y € P,, I,(y) measures the discrepancy betwgerand p in the sense thal, (o) > 0 and
I,(p) = 0if and only ify = p. ThusI,(y) attains its infimum of over P, at the unique measurg = p. In
addition, ,, is strictly convex orP,,.
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Proof. Forx > 0 the graph of the strictly convex functiaffogx has the tangent ling = x — 1 atx = 1. Hence
xlogx > x — 1 with equality if and only ifc = 1. It follows that for anyy € P,

&Iogﬁ > % _q (3)

Pk Pk Pk
with equality if and only ify, = pr. Multiplying this inequality byp; and summing ovet yields

I(y) = ZVk'Og& >y - p) =

k=1 k=1

I,(y) = 0if and only if equality holds in Eq. (3) for eadhi.e., if and only ify = p. This yields the first assertion

in the proposition. This proof is typical of proofs of analogous results involving relative entropy [cf. Proposition 1]
in that we use a global convexity inequalityogx > x — 1 with equality if and only ifx = 1, rather than calculus

to determine wheré, attains its infimum oveP, . Since

I(y) = Zpk—log—

the strict convexity of, is a consequence of the strict convexityxtdgx for x > 0. |

We are now ready to give the first formulation of Boltzmann’s discovery, which we state using a heuristic notation.
However, the proof uses formal calculations that can easily be turned into a rigorous proof of an asymptotic theorem.
That theorem is stated in Theorem 2. From Boltzmann’s momentous discovery both the theory of large deviations
and the Gibbsian formulation of equilibrium statistical mechanics grew.

Theorem 1(Boltzmann'’s discovery — formulation 1}or anyy € P, and all sufficiently smalt > 0

P{L, € B(y, )} = exp[-nl,(y)] as n— oo.
Heuristic proof. By elementary combinatorics

1
P{L, € B(y,8)} = {w €y Ly(w) ~ ;(nn,m/z, . ,nya)}

~ Py{t{wj's= y1} ~ny1, ..., #lw;'s= yo} ~ nyq}
n!

~ nyy nyz
(nyDt(ny2)! - - (nyy)!

P17 Py oy

Stirling’s formula in the weak form lo@g!) = nlogn — n + O(lognr) yields

EIogP {L, € B( s)}’v}log< n! >+i log
poo i S PO Gt - ()] TRk

lo
= —Zyklogyk +0 ( ) Zykbgpk Zyklog_ +0 < gn)

k=1
|
1 (y)+o(°3”).
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Theorem 1 has the following interesting consequenceylle¢ any vector irP, which differs fromp. Since
I,(y) > 0 (Lemma 1), it follows that for all sufficiently smadl> 0

P,{L, € B(y,¢)} = exp[-nl,(y)] = 0 asn — oo,

a limit which, if rigorous, would imply Eqg. (2).
Let A be a Borel subset dP,; the class of Borel subsets includes all closed sets and all open sets. ot
contained in the closure of, then by the weak law of large numbers

lim P,{L, € A} =0,
n—od

and by analogy with the heuristic asymptotic result given in Theorem 1 we expect that these probabilities converge to
0 exponentially fast with. This is in fact the case. In order to express the exponential decay rate of such probabilities
in terms of the relative entropy, we introduce the notafigfd)=inf, c41,(y). The range oL, (w) for w € @, is

the set of probability vectors having the fokyn, wherek € R* has non-negative integer coordinates summing to

n; hence the cardinality of the range does not exagedbince

P{L, € A}y =Y " Pu{L, ~y}~ Y expl-nl,(y)]

y€eA y€eA

and

expl-ni,(A)] < Y expl-nl,(y)] < n*expl-nl,(A)],
yeA

one expects that at least to exponential order
P,{L, € A} =~ exp[-nl,(A)] asn — oo. (4)

As formulated in Corollary 1, this asymptotic result is indeed valid. It is a consequence of the following rigorous
reformulation of Boltzmann’s discovery, known as Sanov’s Theorem, which expresses the large deviation principle
for the empirical vectorg€.,,. That concept is defined in general in Definition 3.

Theorem 2 (Boltzmann’s discovery — formulation 2)lhe sequence of random probability vectts, n € N}
satisfies the large deviation principle @, with rate function/, in the following sense.
1. Large deviation upper bound: for any closed subBeaif P,

1
limsup-logP,{L, € F} < —I,(F).
n

n—o00

2. Large deviation lower bound: for any open sub&etf P,

1
liminf —logP,{L, € G} = —1,(G).
n—oo n
Comments on the proof. Fory € P, ande > 0, B(y, ¢) denotes the open ball with centerand radiug and
B(y, ¢) denotes the corresponding closed ball. SiRgds a compact subset &, any closed subset of P, is
automatically compact. By a standard covering argument it is not hard to show that the large deviation upper bound
holds for any closed set provided one obtains the large deviation upper bound for any close@ balk):

lim sup}IogP,,{L,, € B(y,e)} < —1,(B(y,¢)).
n

n—oo
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Likewise, the large deviation lower bound holds for any operGsptovided one obtains the large deviation lower
bound for any open baB(y, ¢):

lim inflloan{L,, € B(y,e)} = —1,(B(y, ¢)).
n—-oo n

The bounds in the last two displays can be proved via combinatorics and Stirling’s formula as in the heuristic proof
of Theorem 1; one can easily adapt the calculations given in ([1], Section I.4). The details are omitted. [J

For a class of Borel subsetsof P, we can now derive a rigorous version of the asymptotic formula (4). This
class consists of sets such thaint A, the closure of the interior of relative toP,, equalsA, the closure ofA.
Any open ballB(y, ¢) or closed ballB(y, ¢) satisfies this condition.

Corollary 1. Let A be any Borel subset &%, such thaint A = A. Then
1
lim —logP,{L, € A} = —1,(A).
n—-oon
Proof. SinceA D A D int A,

_ 1 _ 1 1
—1,(A) > limsup-logP,{L, € A} > limsup-logP,{L, € A} > lim igof —logP,{L, € A}
n g n

n—o00 n—oo N n

N ! , .
> liminf —logP,{L, € int A} > —I,(int A).
n—oo n

The continuity of/, onP, implies that/,(int A) = I,(int A). Hence by the condition oA, the extreme terms in
this display are equal. The desired limit follows. O

The next corollary of Theorem 2 allows one to conclude that a large class of probabilities invbjvaugverge
to 0. The analogue of this corollary in other large deviation settings is extremely useful in applications. For example,
we will use it in Section 7 to analyze the Curie—Weiss model of ferromagnetism.

Corollary 2. LetA be any Borel subset &, such thatA does not contaip. Thenlp(A) > Oand for some& < oo

P.{L, € A} < CeXp[—nIp(A)] -0 asn— oo.

Proof. Sincel,(y) > 1,(p) = O for anyy # p, the positivity of,(A) follows from the continuity off, onP,.
The second assertion is an immediate consequence of the large deviation upper bound appletthe positivity
of 1,(A). O

Take anye > 0. Applying Corollary 2 to the complement of the open W& (p, ¢) yields P,{L, ¢ B(p,&)} - 0
or equivalently

lim P,{L, € B(p,¢e)} = 1.
n—00

Although this rederives the weak law of large numberdfpas already expressed in Eq. (1), this second derivation
relates the order-1 limit foL,, to the point inP, — namely,p — where the rate functiof, attains its infimum.

In this context we calp the ‘equilibrium value’ ofL,, with respect to the measurés. This limit is the simplest
example, and the first of several more complicated but related formulations to be encountered in this paper, of what
is commonly called a ‘maximum entropy principle’. Following the usual convention in the physical literature, we
will continue to use this terminology in referring to such principles even though we are minimizing the relative
entropy (equivalently, maximizing I, (y)) rather than maximizing the physical entropy. Whgn= 1/« for each

k, the two quantities differ by a minus sign and an additive constant.



R.S. Ellis/Physica D 133 (1999) 106-136 113

Maximum Entropy Principle 1. yo € P, is an equilibrium value of.,, with respect topP, if and only if o
minimizes/, (y) overP,; this occurs if and only ifp = p.

In the next section we will present a limit theorem gy whose proof is based on the precise, exponential-order
estimates given by the large deviation principle in Theorem 2.

4. A conditioned limit theorem for L,

You participate in a crooked gambling game being played with a loaded die. How can you determine the actual
probabilities of each face 2, ... , 6? The conditioned limit theorem to be introduced in this section not only gives
an answer to this apparently ambiguous question, but also, with some additional work, has important statistical
mechanical implications. As we will see in Section 5, it motivates the form of the Gibbs state for the discrete ideal gas
and, by extension, for any statistical mechanical system characterized by conservation of energy. These unexpected
theorems are the first indication of the power of Boltzmann’s discovery, which gives precise exponential-order
estimates for probabilities of the for®,{L, € A}. The theorems have the following form. Suppose that one is
given a particular set and wants to determine a sktbelonging to a certain class (e.g., open balls) such that the
conditioned limit

1

nlewP"{L” € B|Ln € A} = nll—>mOOPn{Ln eBN A}m =1

is valid. Since to exponential order

Py{L, € BN A}m ~ expl-n(1,(B N A) — 1,(A))],

one should obtain the conditioned limitBf satisfies, (BN A) = 1,(A). If one can determine the point inwhere
the infimum ofl,, is attained, then one picsto contain this point. In the examples involving the loaded die and the
discrete ideal gas, such a minimizing point can be determined. It will lead to a second maximum entropy principle
for L,, with respect to the conditional probabiliti&s{-|L, € A}.

We return to the question concerning the loaded die, using the basic probabilistic model introduced in Section 2
(Example 1, part 2). Upon entering the crooked gambling game, one assigns the equal prohabiitig to each
of the six faces because one has no additional information. One then observes the gawesks; probabilistically

this corresponds to knowing a configuratiore {1, ... , 6}". Based on the value of
n n
Sp(@)=) Xj(@) =Y wj,
j=1 j=1

one desires to recalculate the probabilities of the six faces. Being a mathematician rather than a professional gambler,
| will carry this out in the limitn — oo.
If the die were fair, then the sample me&(w)/n should equal approximately the theoretical mean

6
y=) kpi = 35.
k=1

Hence let us assume th&}{/n € [z — a, z], wherea is a small positive number and 2 z —a < z < ¥;
a similar result would hold if we assumed th&it/n € [z,z + a], wherey < z < z+a < 6. We can now
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formulate the question concerning the loaded die as the following conditioned limit: determine positive humbers
{p{,k=1,...,6} summing to 1 such that
" . Sn
pp = lim P,{X1=kl— €[z—a,z]}.
n—o00 n

This will be seen to follow from the following more easily answered question: in the fimit oo, conditioned
ons,/n € [z — a, z], determine the most likely configuratignt = (o7, ..., pg) of L,. In other words, we want
p* € Py such that for ang > 0

. S
lim P, {Ln € B(p*, 5)|_n elz—a, Z]} =1
n—oo n

The form ofp* is given in the following theorem; it depends only gmot ona.
We formulate the theorem for a general state spAce= {y1,...,y,} and a given positive vectgp =
(p1, ..., pa) € Py. As above, define

n o
SniZXj and ?izykpk
=1 k=1

and fora > O fix a closed interval{ — a, z] C [y1,y). A theorem analogous to the following would hold if
[z —a, z] C[y1, y) were replaced byz| z +a] C (3, yal.

Theorem 3.
1. There existe® e P, such that for every > 0

. S,
lim P,,{L,, e B(p®, )| = e[z—a,z]} =1 (5)
n—o00 n
The quantityp® = (piﬁ), .., piP has the form

8- EXp=Byil ok
LY expl-By,le;

whereg = f(z) € R is chosen so thal ¢_, i o = z.

2. For any continuous functioff mappingP, into R
. Sn
lim E*» {f(Ln)I— elz- a,z]} = f("?).
n—o00 n
3. Foreachk e {1,... ,a}

: S,
p;(f)= lim P, {X1=wl— €lz—a,2]}.
n—o00 n

We first show thap #) is well defined. For € R simple calculus gives the following properties:of)=log(>"_;
explryr] pr): ¢’ (r) > 0,c'(r) — y1asr — —oo, c'(0) = y, andc’(r) — y, asr — oo. Hence there exists a
uniquepB = B(z) such that’(—8) = ZZ=1)7k,OIEﬁ) = z, as claimed. Since; < z < y, B8 = B(z) is positive.

In order to prove the limit (5) in part 1, we express the conditional probability in Eq. (5) in terms of the empirical
vectorL, . Define the closed convex set
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o
A2)= {y €Pui) minelz —a,Z]} :
k=1

which containg®. Since for eacly € Q,

1 n
=Sp(@) =Y vk Lu(, y),
n =

it follows that{w € @, : S,(w)/n € [z —a,z]} = {w € L, : L,(w) € A(z)}. Hence using the formal notation of
Eq. (4), we have for large

S
P, {Ln c B(p</-“>,s)|7” elz —a,z]} = Py{L, € B(p"P, &)|L, € A(2)}

~expl-n(l,(B(p", ) N A®R)) — I,(A()))].
The last expression, and thus the probability in the first line of the display, are of order 1 provided
I,(B(p"?, 6) N A(2) = I,(A(2)). (6)

The next proposition shows thgt attains its infimum over (z) at the unique poinp®. This gives Eq. (6) and
motivates the fact that for largg P,{L, € B(p'?),¢)|S,/n € [z — a, z]} ~ 1. Itis not difficult to convert these
formal calculations into a proof of the limit (5). The details are omitted.

Proposition 1. I, attains its infimum oveR(z)={y € Pu : Y r_1y¥k € [z — a, z]} at the unique poinp®
defined in partl of Theorem 3

Proof. We recall thai8 = 8(z) > O and thatforeach e {1, ..., o}

o’ expl-pyd
ok exple(=p)]
where forr € R e(r)=log(}_;_,explryc] px). Hence for any € A(z)
: Y o e p”
()= _wlog™ = ylog-"5 + > ylog——
k=1 Pk X k=1 Pk

=Le 1) = BY yivk — c(=B) = Lp (v) — Bz — c(—B).

k=1
Sincel 4 (v) = 0 with equality if and only ify = p® (Lemma 1), it follows that for any € A(z)
I(y) = =Bz —c(=B) = 1,(p"?)
with equality if and only ify = p®. O
Combining this proposition with part 1 of Theorem 3 gives the second maximum entropy principle in the paper.

Maximum Entropy Principle 2. Conditioned orS,,/n € [z — a, z], the asymptotically most likely configuration
of L, is p®®, which is the uniquer € P, that minimized, (y) subject to the constraint that € A(z). In statistical
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mechanical terminology,®) is the equilibrium macrostate df.,,} with respect to the conditional probabilities
Pn{'|Sn/n € [Z —a, Z]}

Part 2 of Theorem 3 states that for any continuous funcfianappingP, into R
im EP S ®)
lim E™ L f(Ly)|— €z—a,z]{ = f(p'P).
n—o00 n

This is an immediate consequence of part 1 and the continuify Bfart 2 of Theorem 3 is another expression of
the maximum entropy Principle 2.

Let y; be any point inA. As in ([7], p. 87), we prove part 3 of Theorem 3 by relating the conditional probability
P,{X1 = i|S./n € [z — a, 7]} to the conditional expectatioB’ { f(L,)|S,/n € [z — a, z]} considered in part 2.
Giveng any function mapping\ into R, we define a continuous function @y, by

F=D ek
k=1
Since f(Ln) = 3 419 La(yk) = (1/n)3 i _19(X ), by symmetry and part 2
: Su A Su
lim E {¢(Xl)|— elz - a,z]} = lim =) g {¢(Xj)|— €lz—a, z]}
n—o00 n n—-oon _1 n
j_
i P Sn _ BN G
= lim EP (L) €lz—a, 2t = f(0P) =) otn .
n—oo n -1
Settingp=1,, yields the limit in part 3 of Theorem 3:
- Sn #)
lim P, 1 X1=yil— €lz—a,z]f =p;"".
n—o00 n

With some additional work one can generalize part 1 of Theorem 3 by proving that with respect to the conditional
probabilitiesP,{-|S,/n € [z — a, a]}{L,} satisfies the large deviation principle & with rate function

I(y)i{cl;;(y)_lp(A(Z)) if yeAQ)

if v eP\A®R).

This large deviation principle is not needed in the sequel, and the proof is omitted.
In the next section we will show how calculations analogous to those used to motivate Theorem 3 can be used to
derive the form of the Gibbs state for the discrete ideal gas.

5. Gibbs states for models in statistical mechanics

The discussion in the previous section concerning a loaded die applies with minor changes to the discrete
ideal gas, introduced in part 3 of Example 1. This system consistsidéntical, noninteracting particles, each
havinga possible energy levelg, yo, ... , yo. Forow € Q, = A" we write H, (w) in place ofSn(w)ﬁzz?zle;

H, (w) denotes the total energy in the configurati@rin the absence of further information, one assigns the equal
probabilitiespr = 1/« to each of they’s. Definingy=>"7_; ykpx, Suppose that the energy per partidtg,/n, is
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conditioned to lie in an intervak[— a, z], wherea is a small positive number and < z —a < z < y. According
to part 3 of Theorem 3, for eache {1, ... , o}
P/Eﬂ) — ,,”_>mooP" {X1 = ykl% €lz—a, z]} ,

wherep,iﬂ)iexp[—ﬂyk] pk/Z‘j’.‘zlexp[—ﬂyj]pj andg = B(z) € Ris chosen so thazgzlykp,iﬁ) =z

Letr > 2 be a positive integer. The limit in the last display leads to a natural question. Conditiorféd are
[z —a,z], asn — oo what is the limiting conditional distribution of the random variabkés ... , X;, which
represent the energy levels of the firpiarticles? AlthouglX s, ... , X, are independent with respect to the original
product measure,, this independence is lost whet) is replaced by the conditional distributidf,{-|H,/n €
[z — a, z]}. Hence the answer given in the next theorem is somewhat surprising: with respegt|td, /n <
[z — a, 7]}, the limiting distribution is the product measure @p with one-dimensional marginajs'®). In other
words, in the limitn — oo the independence ofy, ..., X; is regained. The theorem leads to, and in a sense
motivates, the concept of the Gibbs state of the discrete ideal gas. We will end the section by discussing Gibbs states
for this and other statistical mechanical models. As in Theorem 3, a theorem analogous to the following would hold
if [z —a,z] C[y1,y) were replaced byz} z + a] C (3, yal-

Theorem 4. Givent € N, yi,, ..., %, € A,and[z —a, 2] C [y1, ),
H t
. n (B)
lim P, {Xl = oo Xo =y l=" €l —a,z]} = 1_[1pkj . (1)
J:

Comments on the proof. We consider = 2; arbitrarytr € N can be handled similarly. Fes € @, andi, j €
{1,...,a} define

n—1
Ln2({yi, yi}) = Ln2(®, {yi, yj})ﬁ; Z(SX_,(w),X_,H(w){yi, Vit + 8%, ). X1 (is ¥j}
j=1
This counts the relative frequency with which the pair, y;} appears in the configuratiqosy, . . . , w,, w1). We

then define the empirical pair vector

This takes values in the sBf, » consisting of alt = {7; j,i, j =1, ... , @} satisfyingr; ; > 0 andZ;’fj:lri,j =1.
Suppose one can show thahtﬁ{pi(ﬁ)p;ﬁ), i,j=1,...,a} hasthe property that for evety> 0
. «  Hn
lim P,{L,2€ B(z*,¢)|— €[z—a,z]{ =1 (8)
n—00 n

Then as in Theorem 3, it will follow that

n—oo

; H
||m Pn Xl:ythzyj|7nG[Z_a’z]}:pl(/s)pj(ﬂ)

As the analogous limit in part 1 of Theorem 3 is derived, Eq. (8) can be proved by showing that the sequence
{L,.2,n € N} satisfies the large deviation principle &3 > ([1], Section 1.5) and that the rate function attains its
infimum over an appropriately defined, closed convex subsef efat the unique point™* (cf. Eq. (6)). The details

are omitted. O
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The quantity appearing on the right side of Eq. (7) defines a probability me&sgren 2, which equals the
product measure with one-dimensional marginaf8. In the notation of Theorem 4,

t
Prp{X1=Ykys oo Xo = i) = szgf)~
j=1

P; g can be written in terms of the total energy(w)ﬁz;zle: forw e Q;

t
P glo} = [[pPle)) =
j=1

20 exp[-B H; (w)] P{w},

whereP{o} = [;_1plw;) = 1/o,

Zi(p)= Y expl-pH; ()] Plw} = (Zexp[—ﬁyk] pk> ,

wesy k=1

andg = B(z) € R is the unique value g8 for which Zgzlykp,iﬂ) = zis valid.

Theorem 4 can be motivated by a non-large deviation calculation that we present using a formal notation [8].
Sincey=Y y_1vkpk = EP»{X1}, by the weak law of large numbe#,{H,/n ~ y} ~ 1 for largen. Since the
conditioning is on a set of probability close to 1, one expects that

. H ] d
lim Pn{Xlzykl,... Xy = Y| — ~y}= im P{X1=yi..... X0 =y} =[] %,
n—00 n n—00 i1
J:

=P{X1=ky, .-, Xi = Y&, }-

Now takez # y and for anyg > O let P, g denote the product measure £ with one-dimensional marginals
p®) . A short calculation shows that for agy> 0

H, Hy,
P, Xl=}’kl,~~,Xt=yk,|7NZ =Py g X1=yk1,~-,Xr=yk,|7~Z .

If one picksB = B(z) such thatz = Zﬁﬂykp,ﬁﬁ(z” = EPp0{X4}, then by the weak law of large numbers
P, g»{Hn/n ~ z} &~ 1, and since the conditioning is on a set of probability close to 1, again one expects that

. H)’[ . Hﬂ
lim P, Xj_:ykl,... , X :ykt|— ~zt=lim Pn,/g(z) Xlzykl,... . ¢ :ykt|— ~z
n—oo n n—o00 n
t
_ _ _ _ (B(2)
—nILmOOPn,ﬂ(z){Xl =Ygy oo Xt =V} = l_[ij
j=1
=P g{X1= Ykys oo X = 1, -

This is consistent with Theorem 4.
For any subseB of @, Eq. (7) implies that

lim Pn{(Xl,... ,X;)€B|%E[Z_Q,Z]}:P[’ﬁ{B}. 9)

n—oo
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Since)_,cq [Hi(®)/t] P glo} = Zzzlykp,ﬁﬂ), the constraint o8 = B(z) can be expressed as a constraint on
P[’/S:

chooses = B(z) so thaty [ .

weYy

} P glo) =z (10)

The conditional probability on the left side of Eq. (9) is known as the Gibbs microcanonical ensemble, and the
probability on the right side of Eq. (9) as the Gibbs canonical ensemble or Gibbs state. This limit expresses the
equivalence of the two ensembles provigid chosen in accordance with Eq. (10). Since the Gibbs state has a
much simpler form than the Gibbs microcanonical ensemble, one usually prefers to work with the former. One can
interpretp as a parameter that is proportional to the inverse temperature.

This discussion motivates the definition of the Gibbs states for a wide class of statistical mechanical models that
are defined in terms of an energy function. We will write the energy function, or Hamiltonian, and the corresponding
Gibbs state a&l, and P, g rather than agl; andP; g, as we did in the preceding paragraph. The notation of Section
2 is used. Thug, is the product measure on the set of subsef®,eE A" with one-dimensional marginajs

Definition 2. Let H, be a function mappin§2, into R; H,(w) defines the energy of the configuratienand is
known as a Hamiltonian. Leg be a parameter proportional to the inverse temperature. Then the Gibbs canonical
ensemble, or the Gibbs state, is the probability measure

P, glo}= exp[-BHy(w)] P,{w} for we Q,,

1
Zn(B)

whereZ, () is the normalization factor that maké&s g a probability measure. That is,

Zy(B)= ) expl=BH, ()] Pale}.

wER,
We call Z, (8) the partition function. FoB C 2, we haveP, g{B} = Y .z Ps plw}.

Noninteracting systems such as the discrete ideal gas have Hamiltonians of thi,fesin= Z;l‘:lHn,j(wj)-
The equivalence of ensembles and related questions for interacting systems have been studied by a number of
authors, including ([7], Section 7.3) [9-11].
One can also characterize Gibbs states in terms of a maximum entropy principle ([12], p. 6)z Gi¥rand
a HamiltonianH,, let B, c R denote the smallest closed interval containing the randéipfw)/n, » € Q,}.
For eachz € int B, definel’,(z) to be the set of probability measur@son 2,, satisfying the energy constraint
Y weq, [Ha(@)/n] Q{w} = z.

Maximum Entropy Principle 3. Letn € N and a HamiltonianH, : ©,, — R be given. The following conclusions
hold:
1. For eachz € int B, there exists a uniqug = f(z) € R suchthaty’ .o [H.(w)/n] Py glw} = z;i.e., such
that Pn’ﬁ e I'y(2).
2. The relative entropyp, attains its infimum over, (z) at the unique measurg, g; Ip, (P, g) = —n(Bz +
(=) = nl,(pP), wherec(r)=log(>_{_;explryi] or)-

Part 1 can be proved by a calculation similar to that given after the statement of Theorem 3 while part 2 can be
proved like Proposition 1. We leave the details to the reader.

In the next section we formulate the general concept of a large deviation principle. Subsequent sections will apply
the theory of large deviations to study interacting systems in statistical mechanics.
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6. Definition of the Large Deviation Principle

In Theorem 2 we formulated Sanov’s Theorem, which is the large deviation principle for the empirical vectors
{L,} on the spacéP, of probability vectors inR*. Applications of the theory of large deviations to models in
statistical mechanics require large deviation principles in much more general settings. As we will see in the next
section, analyzing the Curie—Weiss model of ferromagnetism involves a large deviation principle on the closed
interval [-1, 1] for the sample means of i.i.d. random variables. Analyzing the Ising model in dimersiona
is much more complicated. It involves a large deviation principle on the space of translation invariant probability
measures ofi-1, 1}Zd ([13], Section 11). Aswe will see in Section 9, treating models of two-dimensional turbulence
involves a large deviation principle on the space of probability measur@® en), whereT?2 is the unit torus in
R2 and) is a compact subset .

In order to define the general concept of a large deviation principle, we need some notation. First, o€ @ach
let (22, Fn, On) be a probability space. Th@s, is a set of pointsF, is ac-algebra of subsets 6%, andQ,, is a
probability measure af;,,. An example is given by the basic modelin Section 2, wgre A" = {y1, y2, ..., ya}",

Fn is the set of all subsets 6f,, andQ,, is the product measure with one-dimensional margipals

Second, lefy be a complete separable metric space or, as it is often called, a Polish space. Elementary examples
areX=R? for d € N; X=P,, the set of probability vectors iR%; and in the notation of the basic probabilistic
model in Section 2X equal to the closed bounded intervg{ [y,]. A class of Polish spaces arising naturally in
applications is obtained by taking a Polish spatand considering the spa@)’) of probability measures on
(the Borel subsets ofy. We say that a sequen¢H,,, n € N} in P()) converges weakly tdl € P())), and write
I, = I, if [fdIl, — [f dII for all bounded continuous functiorsmapping) into R. A fundamental fact is
that there exists a metrie on’P())) such thatll,, = IT if and only if m(IT, I1,,) — 0 andP()) is a Polish space
with respect ton ([14], Section 3.1).

Third, for eachn € N let ¥,, be a random variable mappig, into X'. For example, wittk =P, letY,=L,, or
with X=[y1, ye] let ¥,=3"_, X ;/n, whereX j(w)=w; for o € Q,=A".

Finally, let I be a function mapping the Polish spaténto [0, oc]. I is called a rate function if has compact
level sets; i.e., foralM < ocof{x € X : I(x) < M} is compact. This technical regularity condition implies that
is lower semicontinuous; it’ is compact, then the lower semicontinuityloimplies that/ has compact level sets.

For any subsef of X we definel (A)=inf,c41(x). WhenX=P,, an example of a rate function is the relative
entropyl, with respect tqo; whenX=[y1, y,], any continuous functiod function mapping j1, y.] into [0, c0)
is a rate function.

Definition 3 (Large deviation principle). Ldi(2,, F,, P,), n € N} be a sequence of probability spac&sa Polish
space{Y,, n € N} a sequence of random variables such thamnaps<2, into X', and/ a rate function oriX'. Then
{Y,,} satisfies the large deviation principle ahwith rate function/ if for any closed subset of X

lim supllogQ,,{Yn e F} <—I(F)
n

n—oo

and for any open subsét of X

lim infEIoan{Yn € G} > —1(G).
n—-oo n

If {Y,} satisfies the large deviation principle with rate functionhen we summarize this by the formal notation

OulY, € dx} ~ exp[-nl(x)]dx.
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Evaluating the limit superior in Definition 3 faf = X and the limit inferior forG = X yields/(X’) = 0, and
sincel has compact level sets, the sekof X for which 7 (x) = 0 is nonempty and compact. The following result
generalizes Corollary 2.

Theorem 5. Suppose thatY,,n € N} satisfies the large deviation principle on the Polish spatevith rate
function!. Define& to be the nonempty, compact setvo€ X" for which 7 (x) = 0 and letA be a Borel subset of
X such thatd N € = ¢. ThenI (A) > 0 and for som& < co

0,{Y, € A} < Cexp[-nI(A)/2] - 0 as n — oo.

For application in the next section, we state a special case of &mmheorem, which is the large deviation
principle for the sample means of i.i.d. random variables.

Theorem 6(Craner's Theorem).In the basic probability model of Secti@nlet A={—1, 1} and letp=(1/2)6_1 +
(1/2)é1. For w € @, defines, (a))iZ’}zla)j. Then the sequence of sample meighgn, n € N} satisfies the large
deviation principle orff—1, 1] with rate function

I(x)=3(1—x)log(1l —x) + 3(1+ x)log(1+ x).
This theorem is easy to motivate using the formal notation of Theorem 1. For anf—1, 1], S, (w)/n ~ x if
and only if approximatelyn/2)(1 — x) of thew;’s equal—1 and approximatelyn/2) (1 + x) of thew;’s equal 1.
Hence

P, {S; ~ x} ~ Py{Ln(—1) = 3(1—x), Ly(1) = 31+ x)} & exp[-nl,(3(1 — x), 3(1+ x))]
=exp[-nl(x)].

The book [7] presents Craaris Theorem first in the setting &¢ and then in the setting of a Polish space.

For application in Section 9, we state a general version of Sanov's Theorem, which gives the large deviation
principle for the sequence of empirical measures of i.i.d. random variable&QL. 6%, P) be a probability space,
Y a Polish spacep a probability measure o, and{X;, j € N} a sequence of i.i.d. random variables mapping
Q into Y and having the common distributign Forw € Q2 and A any Borel subset g we define the empirical
measure

1
Ly(A) = Ly(o, A>=;Zlaxj<w>{A},
j:

where fory € Y §,{A} equals 1ify € Aand Oify ¢ A. Foreachw L, (w, -) is a probability measure gji. Hence
the sequencél,,, n € N} takes values in the Polish spaeg)).

Theorem 7 (Sanov’s Theorem)The sequencgl,, n € N} satisfies the large deviation principle dn()’) with
rate function given by the relative entropy with respecbt&or y € P(Y) this quantity is defined by

) log(dy /dp)) dy i <
Ip(y)z{fy( gdy/dp)) dy if ¥ <p
00 otherwise.
This theorem is proved, for example, in ([7], Section 6.2) and in ([15], Ch. 2). If the suppprisoa finite set
A C R, then Theorem 7 reduces to Theorem 2.
The following concept will be useful in the analysis of statistical mechanical models.

Definition 4 (Laplace Principle). Le{(%2,, F., P.), n € N} be a sequence of probability spac&sa Polish space,
{Y,,n € N} a sequence of random variables such thatmaps$, into X', and/ a rate function onX’. Then{Y,}
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satisfies the Laplace principle oti with rate function! if for all bounded continuous functiong mappingX
into R

.1 0 1
lim —logE®~"{explf(Y,)]} = lim —/ expf(x)] Qn{Yy € dx} = sup{f(x) — 1 (x)}.
n—oon n—oon [y xeX
Suppose thaty,} satisfies the large deviation principle éhwith rate function/. Then substituting?,{Y, €
dx} ~ exp[-nI(x)]dx gives

%Iog E9 {explf (Y]} = %Iog / explnf (x)] Qn{Yy € dx} ~ %Iog / explnf (x)]lexp[—ni (x)] dx.
X X

By analogy with Laplace’s method dR, the main contribution to the last integral should come from the largest
value of the integrand, and thus the following limit should hold:

}log E9" {explnf (Y,)]} = sup{f(x) — I (x)}.

n xeX
Hence it is plausible thdtr,,} satisfies the Laplace principle with rate functibrin fact, it is not difficult to prove
that{Y,} satisfies the large deviation principle éhwith rate function/ if and only if {Y,} satisfies the Laplace
principle onX” with rate function/ ([15], Theorems 1.2.1 and 1.2.3). As we will see in the next section, where the
Curie—Weiss model is studied, the Laplace principle gives a variational formula for the specific Gibbs free energy.

7. The Curie—-Weiss model of ferromagnetism

The Curie-Weiss model of ferromagnetism is one of the simplest examples of an interacting system in statistical
mechanics. Using the theory of large deviations to analyze it suggests how one can apply the theory to analyze much
more complicated models. The Curie—Weiss model is a spin system on the configuration@pa¢ed, 1}";
the value—1 represents ‘spin-down’ and the value 1 ‘spin-up’. ket(1/2)§_1 + (1/2)81 and letP, denote the
product measure di, with one-dimensional marginats ThusP, {w} = 1/2" for each configuration = {w;, i =

1,...,n} € Q,. The Hamiltonian, or energy, of a configuratieris defined by
2
R n 1
Hy(w)=— ZZ Wiwj = —3 (;Za)]) , (11)
i,j=1 j=1
and the probability of a configuration corresponding to inverse temperatur® is defined by the Gibbs state
1
Pn, {w)= exp[-BH,(w)] Py{w},
B 7. p[-A ]

whereZ, (B) is the partition function

. 1
Zn(p)= /Q PP H )] Pu(d) = 3 expl-pH, ()] 5.

wey,

P, g models a ferromagnet in the sense that the maximuR) gfw} overw € 2, occurs at the two configurations

having all coordinates; equal to—1 or all coordinates equal to 1. Furthermore fas> oo all the mass o, g
concentrates on these two configurations. The Curie—~Weiss model is often used as a mean-field approximation to
the much more complicated Ising model and related ferromagnetic models ([1], Section V.9).
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A distinguishing feature of the Curie—~Weiss model is its phase transition. Namely, the alignment effects incor-
porated in the Gibbs state?, g persist in the limit: — oco. This is most easily seen by evaluating the- oo
limit of the distributionspP, g{S,/n € dx}, whereS,(w)/n equals the spin per sitE;’Azlw.//n. We will see that
for B < 1 this limit acts like the classical weak law of large numbers, concentrating on the value 0. However, for
B > 1the analogy with the classical law of large numbers breaks down; the alignment effects are so strong that the
limiting P, g-distribution ofS, /n concentrates on the two pointsn(g) for somem(B) € (0, 1). The analysis of
the Curie—Weiss model to be presented below can be easily modified to handle an external magneti€tield
resulting probabilistic description of the phase transition yields the predictions of mean field theory ([1], Section
V.9) and ([12], Section 3.2).

We calculate the — oo limit of P, g{S,/n € dx} by establishing a large deviation principle for the spin per
site with respect t®, g. For eachn S, /n takes values inf1, 1]. By the equivalence between the Laplace principle
and the large deviation principle mentioned at the end of the previous section, it suffices to find a rate fignction
on [—1, 1] such that for any continuous functighmapping -1, 1] intoR

lim EIogEP"-f’ {exp[nf (%)“ = sup {f(x)— Ig(x)}.

n—oon [—1,1]

SubstitutingH, (w) = —(n/2)(S,/n)? gives

1 S, 1 Sy S0\
;IogEPn,ﬂ {exp[nf <7)“ = 7o) Qnexp[nf (7) +n (g) <7> } P,(dw)

_ 1 B\ 2 p |50
= 7.6 [l’l]exp|:nf(x) +n <2>x ] P, { . € dx}. (12)

Noticing that

_ AYEAS _ B\ 2 Sn
Zy(B) = /QneXp|:” <§> (7) :| Py (dw) = /[_1,1]eXp|:n <§> X :| P, {7 IS dx} R

we apply Crarér's Theorem 6 twice, in the equivalent form of the Laplace principle. Thus

lim lloan(ﬂ)z sup {<é> xZ—I(x)} (13)
n—-oon ] 2

xe[-1,1

and

lim }Iogf eXp|:nf(x) +n <é) xz] P, {& € dx} = sup {f(x) + <E> x? - I(x)} , (14)
n—oon ~J[_171] 2 n xe[-1.1] 2

wherel (x)=(1/2)(1 — x)log(1 — x) + (1/2)(1 + x)log(1 + x). Forx € [—1, 1] define
Ig(x)=1 (x) — (g) x> — inf {I(y) — <é) yz} ) (15)

ye[-1.1] 2

Equations (13) and (14) give tlee— oo limit of Eq. (12):
1 n
lim =logE s {exp[nf (S—)“ = sup {f(x)— Ig(x)}.
n—-oon n xe[fl,l]

We conclude that with respect {&, g} the sequencgs, /n} satisfies the Laplace principle oa1, 1], and thus the
large deviation principle, with rate functiaiz.
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The limiting behavior of the distributionB, g{S,/n € dx} is now determined by examining whefgattains its
infimum of O ([1], Section IV.4). Infimizing points* satisfyl};(x*) =0or!’(x*) = Bx*.Sincel”(0) = 1and!’ is
concave onf1, 0], convex on [01], for 0 < 8 < 1the only solution to this equationig = 0. Forg > 1there are
three solutions On(B), —m(B), where O< m(B) < 1;ofthese, 0is alocal maximum ata (8) are the infimizers.
The functiorm (B) is monotonically increasing ofl, co); m(8) — 0 asg — 1T andm(B) — 1 asp — oo. The
equation/’(x*) = Bx* is equivalent to the well known mean field equatich= (I')~1(Bx*) = tanh(x*) ([1],
Section V.9) and ([12], Section 3.2).

With 0,=P, g andY,=S,/n, we now apply Theorem 5 for & g < 1 to any closed subset C [—1, 1] that
does not contain 0 and f@ > 1 to any closed subsdt c [—1, 1] that does not contaittm (B). Sincelﬁ(fi) >0
andP, g{S,/n € A} < Cexp[—nlﬁ(fi)/Z] — 0 asn — oo, we are led to the following weak limits:

1 " 80 if 0< ,3 < 1
Pn - i i 1
A {n;w < dx} = { 1/2)émp) + (L/2)6_mpy If B> 1 (16)

We callm (B) the spontaneous magnetization for the Curie—Weiss modedandl the critical inverse temperature
([1], Section IV.4).

For eachg > 0 we define€g={x € [-1,1] : Ig(x) = 0}; thus,E={0} for 0 < B < 1 and&g={+m(p)}
for B > 1. The limit (16) justifies callingg the set of equilibrium macrostates for the spin per Sjtén in the
Curie—Weiss model. It is not difficult to show that pointse £4 have an equivalent characterization in terms of a
maximum entropy principle. Because of the relatively simple nature of the model, this maximum entropy principle
takes a rather trivial form. The details are omitted.

Before leaving the Curie—Weiss model, there are several crucial points that should be emphasized. The first is
to understand what makes possible the large deviation analysis of the model. In Eq. (11) we write the Hamil-
tonian as a quadratic function of the spin per sit¢n, which by Crangr's Theorem 6 satisfies the large de-
viation principle on 1, 1] with respect to the product measurBs The equivalent Laplace principle allows
us to convert this large deviation principle into a large deviation principle with respect to the GibbsRtgtes
The form of the rate functiorig allows us to complete the analysis. As we will see in the next section, this
insight is fundamental in understanding how the theory of large deviations can be applied to more complicated
models.

The second crucial point involves the variational formula derived in Eq. (132),(8) is a partition function of a
statistical mechanical model on the configuration sgace- {—1, 1}, then(—1/8) times lim,_, .. (1/n)logZ, (8)
defines a quantity known as the specific Gibbs free energy. There is an analogous definition for models on other
configuration spaces. A general statistical mechanical principle characterizes the set of equilibrium macrostates
as those that give the extremum in the variational formula for the specific Gibbs free energy. In the case of the
Curie-Weiss model, this variational formula is given in Eq. (k3)gives the supremum af/2)x2 — I (x) over
[—1,1]ifand only if Ig(x*) = 0 = inf ¢[—1,17/8(x). This holds if and only ik € £g. Our large deviation analysis
of the phase transition in the Curie—~Weiss model has the attractive feature that, rather than appeal to a general
statistical mechanical principle, it directly motivates the physical importanég.of his set is the support of the
n — oo limit of the distributionspP, g{S,/n € dx}. As we will see in the next section, an analogous fact is true for
a large class of statistical mechanical models (Theorem 9).

The third crucial point is related to the second. The large deviation analysis of the Curie—~Weiss model yields the
limiting behavior of theP, g-distributions ofS, /». This limit corresponds to the classical weak law of large numbers
for the sample means of i.i.d. random variables and suggests examining the analogues of other classical limit results
such as the central limit theorem. Such limit theorems are derived and their statistical mechanical implications are
explained in ([1], Section V.9) and in [16—18]. Related work has been done for the Curie—Weiss—Potts model [19,20]
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as well as for the Ising and other models. For the latter models, refined large deviations at the surface level have
been studied; see ([7], p- 339) for references.

8. A general approach to the large deviation analysis of models in statistical mechanics

By abstracting the calculations in the last section, we can give a general approach to the large deviation analysis
of models in statistical mechanics. This approach will be applied in the next section to two-dimensional turbulence.
We consider a class of models that are defined in terms of the following data.
e A sequence of probability spac&s2,, 7., P,), n € N}; {Q,} are the configuration spaces.
e For eachn € N the HamiltonianH, () of w € ©,,; H, is a bounded measurable function mappinginto R.
e A sequence of positive scaling constafits, n € N} such thatz, — oc.

In terms of these quantities we define for each N, 8 € R, and setB € F, the partition function

Zn(ﬁ)ﬁfg2 exp[—pB H, (w)] P, (dw),
which is well defined and finite, and the Gibbs state
Py g{B}= 1/9X[ﬂH()]P(d)
n == < - n{w nUw).
AT P

Although for spin systems one usually tal®s- 0, in generap € R is allowed; for example, negative valuesmf
arise naturally in the study of two-dimensional turbulence.farR we define

1
¢(B)= lim ——109Z, ()

if the limit exists and is nontrivial. The functiorg~1¢(B) is the specific Gibbs free energy for the model. As in
the Curie—Weiss model, one of our goals is to expgg#h as a variational formula of the form

9(B) = sup{—BH(x) — 1(x)} = —inf (BH(x) + 1 (x)}, 17)
xeX xeX

whereX is some Polish spacé] is a bounded continuous function mappifignto R, and! is a rate function on

X. We would also like to use large deviation methodology to interpret probabilistically the pdirtst that give

the extremum in such variational formulas.

Before continuing with the general analysis, we recall how we proceeded in the case of the Curie-Weiss model.
For that modef2, = {—1, 1}", F, is the set of subsets 6f,, and P, is the product measure with one-dimensional
marginals(1/2)é_1 + (1/2)81. H, is defined in Eq. (11), and(B) is expressed in terms of the variational formula
(13). In order to derive this formula as well as the large deviation principléSofn} with respect to the Gibbs
states, we rewrot#l,, as a quadratic function &, /» and used the Laplace principle fg§, /n} given by Crargr’s
Theorem 6.

Numerous other models can be treated analogously. For example, the Curie—~Weiss—Potts model of ferromagnetism
is a spin system on the configuration spa@gs=A", whereA={1, 2, ... ,q} andq > 3; F, is the set of subsets
of Q,; and P, is the product measure with one-dimensional margi(ﬂazlg)zleai. The HamiltonianH,, for the
model equals-(1/2)(L,, L), where(-, -} denotes the inner product ®&¥ andL, is the empirical vector om.

The elementary form of Sanov’s Theorem given in Theorem 2 for the empirical vé&tgrallows one to derive a
variational formula fokp(8) as in Eq. (17) as well as a large deviation principle{fby} with respect to the Gibbs
states ([13], Section 10).
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Although much more complicated, the Ising model®R, D > 2, is also amenable to a large deviation analysis.
LetA, bethe hypercube i ? consisting of sites = (i1, . .. , ip) each coordinate of which satisfiesli; <n; A,
contains:” points. The Ising model is a spin system on the configuration sgagesnsisting ofo = {w;, i € A,}
such that each; € {—1, 1}. We write 2,,={—1, 1}*». The scaling constants, equal the number of sites ify,,;
thusa,=n". For the Ising modelF, is the set of subsets 6f, and P, is the product measure with one-dimensional
marginals(1/2)s_1 + (1/2)81. The HamiltonianH,, is a sum over nearest neighbor pairij. Up to a small error
as in Eqg. (20), one rewrited,, in terms of an infinite dimensional generalization of the empirical measure known
as the empirical field. Using the large deviation principle for the latter with respect to the product mé&sjyres
derived in either of the papers [21,22], one expregsgh in terms of a variational formula as in Eqg. (17) and
derives a large deviation principle for the empirical fields with respect to the Gibbs states. The argument is outlined
in ([13], Section 11).

This discussion points the way to a general approach. First, we update two definitions given in Section 6. Let
{(Qn, Fn, On), n € N} be a sequence of probability spacésa Polish spacdY,, n € N} a sequence of random
variables such thdf, maps,, into X', and/ a rate function orX’. Then{Y,} is said to satisfy the large deviation
principle onX’ with scaling constanté, } and rate functior? if for any closed subsef of X the large deviation
upper bound

lim supilogQ,,{Y,, e F} < —I(F) (18)

n—oo dp

is valid and for any open subsétof X the large deviation lower bound
1
lim iglof—loan{Yn e G} > —-1(G) (29)
n— an

is valid. {Y,} is said to satisfy the Laplace principle ahwith scaling constant&z:,} and rate functior if for all
bounded continuous functionSmappingX’ into R

1 o1
lim —logE 2" {expla, f (Y)]} = lim — / expla, f ()] Qn{Y, € dx} = sup{f(x) — I(x)}.
n—>ooa” n—)OOan X XEX

As pointed outin ([15], Theorems 1.2.1 and 1.2{3),} satisfies the large deviation principle with scaling constants
{a,} and rate functior if and only if {Y,} satisfies the Laplace principle with scaling constdaig and rate
function .

Aswe will see, alarge deviation analysis of the general model is possible provided the following can be determined.
o Hidden spaceThis is a Polish spac#'.
e Hidden processThis is a sequencd’,, n € N}, where for each € N, Y,, is a random variable mappirig, into

X.
¢ Hamiltonian representation functioithis is a bounded continuous functihmappingX into R such that for

eachn e N

H,(®) = a,H(Y,(w)) + 0(a,) uniformly for o € Q,; (20)
i.e.,
. 1 5
lim_sup—|H, () — a,H (Y,(@))| = 0.

we2, An
e Large deviation principle for the hidden proce3$iere exists a rate functianmappingX’ into [0, oco] such that

with respect td P, } the sequencéY,,} satisfies the large deviation principle éh or equivalently the Laplace
principle onX’, with scaling constantg:, } and rate function.
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For example, in the case of the Curie—Weiss magelquals:, X equals -1, 1], Y,, equals the spin per si /n,
and forx e [—1, 1] the Hamiltonian representation function is given Byx)= — (1/2)x2. Equation (20) holds
without any error term; i.e H, (w) = nH(Y,). In the case of the Curie—~Weiss—Potts modglequalsz, X equals
P,, Y, equalsL,, and fory € P, the Hamiltonian representation function is givenByy)= — (1/2)(y, y). As
in the Curie—Weiss model, Eq. (20) holds without any error term. In the case of the Ising ma#é&l, ap equals
nP, the hidden process is the sequence of empirical field2,68{—1, 1}, and the hidden space is the space of
translation invariant probability measures fnl, 1}Zd. The form of the Hamiltonian representation function is
givenin ([13], Section 11); Eq. (20) is valid with an error term that represents boundary effects. While for numerous
other models the hidden space, the hidden process, and the Hamiltonian representation function can be identified,
in general it is not obvious how to determine them. This explains our choice of the term ‘hidden’.

We now return to the general case. The large deviation analysis of the general model is summarized in the next
theorem. Part 1 states a variational formula for the specific Gibbs free energy and part 2 the large deviation principle
for the hidden process with respect to the sequence of Gibbs states. Part 3 describes probabilistically thfe set
equilibrium macrostates, which is the set of points at which the rate function in part 2 attains its infimum of 0.

Theorem 8. We assume that there exists a hidden sp#c¢ce hidden proces$Y,,n € N}, and a Hamiltonian
representation functiod and that with respect t¢P,} the hidden process satisfies the large deviation principle
on X with scaling constant, } and some rate functioh. For eachg € R the following conclusions hold,

1. p(B)=lim,_ o (1/a,)l0gZ,(B) exists and is given by

@(B) = —inf {BH(x) + I (x)}.
xeX

2. With respect to the Gibbs statgB, g} the hidden proces’, } satisfies the large deviation principle dnwith
scaling constant$a, } and rate function

Ig(0)=1(x) + BH(x) — inf (G + BH ().
3. We define the set of equilibrium macrostates
Ep={x € X : Ig(x) =0}.

Thené&g is a nonempty, compact subset®fIn addition, if A is a Borel subset ot such thatd N &g = ¢,
thenlz(A) > 0and for someC < co

nlg(A)
Py plY, € A} < Cexp - -0 as n— oo.

Proof. The proofs of parts 1 and 2 follow the similar calculations for the Curie—~Weiss model once we take into
account the error betweéet, anda, H (Y,) expressed in Eq. (20).
1. By Eq. (20)

1 1 ~
—logZ,(B) — _|09/ exp[-pBa, H(Y,)]dP,
an an Qy,

img/ expl—pHald Py — —log / expl—Ban A (V)] dP,
an Q, an Qp

< |ﬂ|i Sup|H, (w) — ayH(Yy(w))] — 0 asn — oo.

n we2,
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Since H is a bounded continuous function mappifginto R, the Laplace principle satisfied Hy,} with
respect td P, } yields part 1:

lim ilogZ,l(ﬂ) = lim i|og/ expl—Ba, H(Y,)]dP, = —inf {BH (x) + [ (x)}.
n—ooqay, n—o0oqay, Q xeX

2. We proceed as in the proof of part 1, but now withg replacingp,. For any bounded continuous functign
mappingX’ into R, again Eq. (20) and the Laplace principle satisfied 1y} with respect tq P, } yield

.1 1 1
lim _IOQ/ exp[anf(yn)] dPn,ﬂ = lim _IOQ/ exp[anf(yn) - ,BHn] dPn — lim _IOan(,B)
Q, Q n—00ay,

n—ooqy, n—00ay,

.1 ~ o1
lim —log | expla,(f(Yx) — BHY,)]dP, — n'Lmooa—|Oan(ﬂ)

n—o00dy Q,
= supl{f(x) — BH(x) — I(x)} + inf {BH(x) + I (x)}
xeX xeX
= su)g{f(x) — Ig(x)}.

By hypothesis/ has compact level sets ahtiis bounded and continuous. Thlyshas compact level sets. Since
Ig mapsX into [0, oo], 14 is a rate function. We conclude that with respedtRp g} the sequenc, } satisfies
the Laplace principle, and thus the large deviation principle, with scaling congtahtsnd rate functiors.

3. As pointed out before Theorem 5, since the infimunigbver X equals 0£5 is the set of minimum points
of Iz over X and is nonempty and compact.Afn £ = ¢, then for eachx € A Iz(x) > 0. Sincely is a rate
function, it follows that/g(A) > 0. The large deviation upper bound completes the proof of part 3. O

Part 3 of the theorem can be regarded as a concentration property®f ghdistributions ofY,, which justifies
calling £g the set of equilibrium macrostates. With respect to these distributions, the probability of any Borel
set A whose closure has empty intersection with goes to 0 exponentially fast witl,. This large deviation
characterization of the equilibrium macrostates is an attractive feature of our approach.

The concentration property of thig, g-distributions ofY,, as expressed in part 3 of the theorem has a refinement
that arises in our study of the Curie-Weiss model. From Section 7 we recalighat {0} for 0 < g < 1 and
&g = {£m(P)} for B > 1, wherem(p) is the spontaneous magnetization. According to Eq. (16), fgf all0 the
weak limit of P, g{S,/n € dx} is concentrated ofig. While in the case of the general model treated in the present
section one should not expect such a precise formulation, the next theorem gives considerable information, relating
weak limits of subsequences Bf (Y, € dx} to the set of equilibrium macrostatés. For example, if one knows
that £4 consists of a unique poirt, then it follows that the entire sequeng®, g{Y, € dx}, n € N} converges
weakly tod;. This situation corresponds to the absence of a phase transition. The proof of the theorem is technical
and is omitted.

Theorem 9. We fixg € R and use the notation of TheoreBnlf £ consists of a unique point, then P, g{Y, €
dx} = &;. If £ does not consist of a unique point, then any subsequen¢g,offY, € dx},n € N} has a
subsubsequence converging weakly to a probability medsgien X that is concentrated ofig; i.e., TIg{(£p)} =
0.

In the next section we apply the general large deviation procedure just presented to the analysis of models of
two-dimensional turbulence.
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9. Maximum entropy principles in two-dimensional turbulence

This section presents an overview of recent research, in which Gibbs states are used to predict the large-scale,
long-lived order of coherent vortices that persist amid the turbulent fluctuations of the vorticity field in two dimen-
sions [4]. This is done by applying a statistical equilibrium theory of the two-dimensional Euler equations, which
govern the motion of an inviscid, incompressible fluid. As shown in [23,24], these equations are reducible to the
vorticity transport equations

dw  Jw Y dw Y

E—i_a_xlii_xz_a_xza_xl_o and — Ay = o, (21)
in which w is the vorticity,y is the stream function, and = 82/8xf + a/axg denotes the Laplacian operator on
R2. The two-dimensionality of the flow means that these quantities are related to the velocity-igid, v, 0)
according to0, 0, w) = curlv andv = curl(0, 0, v). All of these fields depend upon the time variable [0, co)
and the space variable = (x1, x2), which runs through a bounded domainR4. Throughout this section we
assume that this domain equals the unit tofds= [0, 1) x [0, 1), and we impose doubly periodic boundary
conditions on all the flow quantities.

The governing Eg. (21) can also be expressed as a single equation for the scalar vorticityfieldx, 7). The

periodicity of the velocity field implies thaf;.«» dx = 0. With this restriction on its domain, the Green’s operator
G = (—A)~ takingw into y with [r2¥ dx = 0 is well-defined. More explicitly(5 is the integral operator

Y (x) = Go(x) = / g(x — xNo(x') dy/, (22)
T2
whereg is the Green’s function defined by the Fourier series
gl —x)= Y [2mg| 2P, (23)
O#zeZ?

Consequently, Eg. (21) can be considered as an equatiomlione.

Even though the initial value problem for Eq. (21) is known to be well-posed for weak solutions whenever the
initial dataw® = w (-, 0) belongs taL > (X') [24], it is well known that this deterministic evolution does not provide
a useful description of the system over long time intervals. When one seeks to quantify the long-time behavior
of solutions, therefore, one is compelled to shift from the microscopic, or fine-grained, description inhesent in
to some kind of macroscopic, or coarse-grained, description. We will make this shift by adopting the perspective
of equilibrium statistical mechanics. That is, one views the underlying deterministic dynamics as a means of
randomizing the microstai® subject to the conditioning inherent in the conserved quantities for the governing
Eg. (21), and one takes the appropriate macrostates to be the canonical Gibbs meékuydsiilt from these
conserved quantities. In doing so, of course, one accepts an ergodic hypothesis that equates the time averages
with canonical ensemble averages. Given this hypothesis, one hopes that these macrostates capture the long-lived,
large-scale, coherent vortex structures that persist amid the small-scale vorticity fluctuations. The characterization
of these self-organized macrostates, which are observed in simulations and physical experiments, is the ultimate
goal of the theory.

The models that we will consider build on earlier and simpler theories, the first of which was due to Onsager
[25]. Studying point vortices, he predicted that the equilibrium states with high enough energy have a negative
temperature and represent large-scale, coherent vortices. This model was further developed in the 1970’s, notably
by Montgomery and Joyce [26]. However, the point vortex model fails to incorporate all the conserved quantities
for two-dimensional ideal flow.
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These conserved quantities are the energy, or Hamiltonian functional, and the family of generalized enstrophies,
or Casimir functionals [24]. Expressed as a functionabpthe kinetic energy is

1
H(a))i—/ gx — xNw(x)w(x") dx dx’. (24)
2 Jr2xr2
The so-called generalized enstrophies are the global vorticity integrals

A(a))if a(w(x)) dx, (25)
T2

wherea is an arbitrary continuous real function on the range of the vorticity. In terms of these conserved quantities,
the canonical ensemble is defined by the formal Gibbs measure

Pp o(dw) = Z(B, a) *exp[-BH (w) — A(w)] T1(dw), (26)

whereZ(8, a) is the associated partition function ahtildw) denotes some invariant product measure on some
phase space of all admissible vorticity fieldsOf course, this formal construction is not meaningful as it stands

due to the infinite dimensionality of such a phase space. We therefore proceed to define a sequence of lattice models
on T2 in order to give a meaning to this formal construction.

One lattice model that respects conservation of energy and also the generalized enstrophy constraints was devel-
oped by Miller et. al. [27,28] and Robert et. al. [29,30]; we will refer to it as the Miller—Robert model. A related
model, which discretizes the continuum dynamics in a different way, was developed by Turkington [31]. These
authors use formal arguments to derive maximum entropy principles that are argued to be equivalent to variational
formulas for the equilibrium macrostates. In terms of these macrostates, coherent vortices of two-dimensional tur-
bulence can be studied. The purpose of this section is to outline how large deviation theory can be applied to give a
rigorous derivation of these variational formulas. References [4] and [31] discuss in detail the physical background.

The variational formulas will be derived for the following lattice model that includes both the Miller—Robert
model and the Turkington model as special casesT'Betenote the unit torus [@) x [0, 1) with periodic boundary
conditions and let be a uniform lattice of=22" sitess in 72, wherem is a positive integer. The intersite spacing
in each coordinate direction is2. We make this particular choice afto ensure that the lattices are refined
dyadically asn increases, a property that is needed later when we study the continuum limit obtained by sending
n — oo along the sequenee= 22", In correspondence with this lattice we have a dyadic partitiofi%into n
squares called microcells, each having arga. For eachs € £ we denote byM (s) the unique microcell having
the sites in its lower left corner. AlthoughC and M (s) depend om, this is not indicated in the notation.

The configuration spaces for the lattice model are the product sggaces)”, where) is a compact set ifR.
Configurations irR2,, are denoted by = {¢(s), s € L}, which represents the discretized vorticity field. loebe
a probability measure o}y and let P, denote the product measure @ with one-dimensional marginajs. As
discussed in [4], the Miller—Robert model and the Turkington model differ in their choices of the compgct set
and the probability measuye

For¢ € ©, the Hamiltonian for the lattice model is defined by

.1
Hy@)=55 3 gnls = sNE6)E(, (27)
& s,s'el
whereg, is the lattice Green’s function defined by the finite Fourier sum

gn(s —s)= Z |27rz|_262”i<”_sl) (28)
O#£zeL*



R.S. Ellis/Physica D 133 (1999) 106-136 131

over the finite seL*={z = (z1, z2) € Z? : =21 < z1, 70 < 2"~1}. Leta be any continuous function mapping
YintoR. For¢ € @, we also define functions known as the generalized enstrophies by

1
Ana©)==3 ac(s)). (29)
sel

In terms of these quantities we define the partition function
Zy, (,3, a):‘/;2 EXp[—,BHn ¢) — An,a(é‘)] Py, (dé‘) (30)

and the Gibbs statg, g ., which is the probability measure that assigns to a Borel subsét2, the probability

. 1
Pn,ﬂ,a{B}:m/I;exp[_ﬁHn(g) - An,a(g)] Pn(dé-) (31)

These probability measures are parametrized by the corgstatit and the functiorm € C()). The dependence of
Gibbs measures on the inverse temperafuigestandard, while their dependence on the functidimat determines
the enstrophy functional is a novelty of this particular statistical equilibrium problem. The Miller—Robert model
and the Turkington model also differ in their choices of the paranfeterd the functiora.
The main theorem in this section applies the theory of large deviations to derive the continuum-mib of
the lattice model just introduced. Because the interactigs— s’) in the lattice model are long-range, one must
replaceg anda by n8 andna in order to obtain a nontrivial continuum limit [4,27,28]. Replacipi@nda by ng
andna in the formulas for the partition function and the Gibbs state is equivalent to replakiaagd A, by nH,
andnA, and leaving8 anda unscaled. We carry out the large deviation analysis of the lattice model by applying
the general procedure specified in the preceding section, making the straightforward modifications necessary to
handle both the Hamiltonian and the generalized enstrophy. Thus, we seek a hidden space, a hidddy,grocess
representation functiond and A, for the Hamiltonian and for the generalized enstrophy, and a large deviation
principle for{Y,} with respect to{ P, }. Because of the replacement8f and A,, by nH, andnA,,, the defining
properties of the representation functions that we now present differ by a factofrofm what appears in the
preceding section. The first marginal of a probability meaguoa T2 x ) is defined to be the probability measure
ui{A}=u{A x Y} for Borel subsets\ of 72.
e Hidden spaceThis is the spacé, (T2 x ) of probability measures ofi2 x ) with first marginald, where
6(dx) = dx is Lebesgue measure @if.
e Hidden processFor eachn € N, Y, : Q, — Pg(T? x ) is defined by

Y (dx x dy) = Y, (¢, dx x dy)=dr @ Y Las) (x)8¢5) (dy).
sel

Thus for Borel subsets of 72 x

FuA1=Y [ Lari 6 e @),

seL’ A

Since) .1y (x) = Lforallx € T2, the first marginal ot,, equals d.
¢ Hamiltonian representation functioi : P, (T2 x )) — R is defined by

7 1 1 / / /
H(M)izf g(x —xNyy w(dx x dy)u(dx’ x dy”),
(T?xY)?
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whereg(x — x') is defined by the Fourier serigs .. . z2|2mz|~2€?" =), As proved in [4],H is bounded
and continuous and there exigts< oo such that

logn 1/2
SUp|H,(¢) — HY, (¢, )| < C( ) for all n e N. (32)

Ley,

e Generalized enstrophy representation functiap.: Py (T2 x )) — R is defined by
Ag(w)= f a(y) u(dx x dy).
T2xY

A, is bounded and continuous and
Ana(8) = A,(Yo(z, ) for all ¢ € Q,. (33)

e Large deviation principle for the hidden proce$tith respect to the product measuids }, {Y,,} satisfies the
large deviation principle o, (72 x ))) with rate function the relative entropy

Toxp ()= fTZX)i (IOgd(QXp)) du if pK8xp
otherwise

We first comment on the last item. The large deviation principle for the hidden process with req@g¢tisdar
from obvious and in fact is one of the main contributions of [4]. We will address this issue after specifying the large
deviation behavior of the model in Theorem 10. Concerning Eq. (32), 8ifidé€s)} = 1/n, itis plausible that

HY, (¢, )) =5 Z /M g(x —x) dx dx’ £ (5)¢(s")

s s'el ()xM(s")

is a good approximation tH,,(;)i[l/(ZnZ)]ZS)S/Eﬁgn(s —5)¢(s)¢(s"). Concerning Eq. (33), far € 2,

- 1
Auruen = [ a6 dr x dy) = T3 a(e) = Ara(©)
T2xY nseﬁ

The proofs of the boundedness and continuityigfare straightforward.

Part 1 of Theorem 10 gives the asymptotic behavior of the scaled partition fun&jgng, na), and part 2
states the large deviation principle for the hidden pro¢Esswith respect to the scaled Gibbs stais,g ... The
rate function has the familiar forp ,=1,x¢ + ﬂFI + A — const; the relative entropk, ..o arises from the large
deviation principle fof{Y,,} with respect td P,}, and the other terms arise from Eqgs. (32) and (33) and the form of
P, np.na- Part 3 of the theorem gives properties of theget of equilibrium macrostategy , consists of measures
w at which the rate functiodg , in part 2 attains its infimum of 0 oveP, (T2 x )). The proof of the theorem
is omitted since it is similar to the proof of Theorem 8. We also omit the analogue of Theorem 9 concerning the
relationship between weak limits of tii ,4 .,-distributions ofY,, and&g .

Theorem 10. For eachg € R anda € C(}) the following conclusions hold.
1. ¢(B, a)=lim,_. ~(1/n)logZ,(nB, na) exists and is given by the variational formula

pB,a)=— inf  {BHW + Au(w) + Iyxo (1)}
UEPH(T2x))
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2. With respect to the scaled Gibbs stat®s .5 ..}, {V,} satisfies the large deviation principle dnwith scaling
constantgn} and rate function

Ip.a(W=1pxo(W) + BH() + Ag(w) — inf (Ixo(v) + BHW) + A ()}
vePy(T2x))

3. We define the set of equilibrium macrostates
Epa=lp € Po(T? x V)t Ip.a() = 0}.

Thenég 4 is a nonempty, compact subse®f(T2 x V). In addition, if A is a Borel subset dPy (72 x ) such
thatA N &g, = ¥, thenlg ,(A) > 0 and for all sufficiently large:

Ig.qa(A
Pn,n,B,na{Yn S A} < exp[_nﬁ’—;()} — 0 as n— oo.

The paper [4] and a sequel currently in preparation discuss the physical implications of the theorem and the
relationship between the following concepts in the context of the Miller—Robert model and the Turkington model:
n € Pg(T? x ) is an equilibrium macrostate (i.gu, € Ep.4) andp satisfies a corresponding maximum entropy
principle. In the Miller—Robert model, the maximum entropy principle takes the form of minimizing the relative
entropylg, (1) overu e Py(T2 x V) subject to the constraints

A =" and [ s = [ 0
T2 T2

wherew? is an initial vorticity field andH («°) is defined in Eq. (24). In the Turkington model, the maximum entropy
principle takes a somewhat related form in which the second constraint appearing in the Miller—Robert maximum
entropy principle is relaxed to a family of convex inequalities parametrized by poir¥s Wnderstanding for
each model the relationship between equilibrium macrostatexd the corresponding maximum entropy principle
allows one to identify a steady vortex flow with a given equilibrium macrogtaférough this identification, which
is described in [4], one demonstrates how the equilibrium macrostates capture the long-lived, large-scale, coherent
structures that persist amid the small-scale vorticity fluctuations.

We spend the rest of this section outlining how the large deviation principle is proved for the hidden process

Ya(dr x dy)=dx @ Y L) () 8¢5 ()
sel

with respect to the product measufé% }. The proof is based on the innovative technique of approximatjray
a doubly indexed sequence of random meas{iigs. } for which the large deviation principle is, at least formally,
almost obvious. This doubly indexed sequence, obtained fiQirby averaging over an intermediate scale, clarifies
the physical basis of the large deviation principle and reflects the multiscale nature of turbulence. A similar large
deviation principle is derived in [32,33] by an abstract approach that relies on a convex analysis argument. That
approach obscures the role of spatial coarse-graining in the large deviation behavior.

In order to defineW,, ., we recall thatC contains: = 22" sitess. For even < 2m we consider a regular dyadic
partition of 72 into 2" macrocells{D, x, k = 1,2, ... ,2"}. Each macrocell containg/2" lattice sites and is the
union ofn/2" microcellsM (s), whereM (s) contains the site in its lower left corner. We now define

2
. 1
Wi (dx x dy) = W, (¢, dx x dy)=dx ® ,;1')“ @) D Seio) @dy).

seD; i
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W, is obtained fron¥,, by replacing, for each € D, ;, the point mass; ) by the averagen/Z’)—lzsethSg(s)
over then /2" sites contained i, ;.

We need the key fact that with respect to a suitable metan Py (72 x V) d(Y,, W,.,) < ~/2/2'/2 for all
n = 2" and all evenr € N satisfyingr < 2m. The proof of this approximation property uses the fact that the
diameter of each macrocel), equalsy/2/2"/2 [4]. The next theorem states the two-parameter large deviation
principle for{W, ,} with respect to the product measufé%}. By means of the approximation property, it is then
straightforward to show that with respect{8,}, {Y,,} satisfies the large deviation principle with the same rate
functionlg,.

Theorem 11. With respect to the product measufd }, the sequencgW,, ,} satisfies the following two-parameter
large deviation principle orP, (T2 x ) with rate functionl ,: for any closed subsét of Po(T2 x Y)

. . 1
limsup lim sup=log P,{W, , € F} < —Iyx,(F)
n

r—>o0 n—o00

and for any open subsét of Py (T2 x ))

P |
liminf liminf —logP,{W, , € G} > —I5x,(G).
r—o00 n—o0o n

Our purpose in introducing the doubly indexed proc®#ss. is the following. The local averaging over the sets
D, introduces a spatial scale that is intermediate between the macroscopic scale of thié torithe microscopic
scale of the microcell8? (s). As a resultW, . can be written in the form

2r
Wi (dx x dy) = dx ® Y "1p, , (x) Lur.x (dy), (34)
k=1

where

Ln,r,k(d)’) = Ln,r,k(ga dy):

D e (dy).

n/2r s€Dy
Since eaclD, ; contains:/2" lattice sites, with respect td P, } the sequencgL, ., k = 1,... , 2"} is afamily of
i.i.d. empirical measures. For eacland eaclk € {1, ... , 2"} Sanov’s Theorem 7 implies that as—> oo {L, , x}

satisfies the large deviation principle #{))) with scaling constants/2" and rate functiori,,.
Itis easy to motivate the large deviation principle fé#, ,} stated in Theorem 11. Suppose that Py (T2 x )
has finite relative entropy with respectiox p and has the special form

or

u(dx x dy) = dx ® T(x.dy). where z(x,dy)=) "1p,,(x) % (dy) (35)
k=1
andrty, ..., Tor are probability measures @i The representation (34), Sanov’s Theorem, and the independence

of Ly,1,..., Lyr2 suggest that

1 1
lim —logP,{W, , ~ u}= lim =logP,{Ly,x ~w,k=1,...,2"}
n—-oon n—-oon

13
=—> lim
2”k n—oon /2"

IOan{Ln,r,k ~ 1}
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12
~ —ykzlp(rk) _ —/T21p<r(x, ) d

=1

_ d‘l,'(x, )
B __/Tz/y (IOQW()’)> 7(x, dy) dx

_ du -
- _/T2xy <|Ogd(0 X 0) x, y)> p(dx x dy) = —Toxp ().

The two-parameter large deviation principle &), . with rate functionly ., is certainly plausible, in view of the

fact that any measure € Py (T2 x V) can be well approximated, as— oo, by a sequence of measures of the
form Eq. (35) ([34], Lemma 3.2). The reader is referred to [4] for an outline of the proof of this two-parameter large
deviation principle. The large deviation principle fd¥, ,} is a special case of a large deviation principle proved

in [34] for an extensive class of random measures which incliidgs } as a special case.

This completes our application of the theory of large deviations to models of two-dimensional turbulence. The
asymptotic behavior of these models is stated in Theorem 10. One of the main components of the proof is the
large deviation principle for the hidden procg¥s}, which in turn follows by approximating the hidden process by
the doubly indexed sequen¢®,, .} and proving the large deviation principle for this sequence. This proof relies
on Sanov’'s Theorem, which generalizes Boltzmann’s 1877 calculation of the asymptotic behavior of multinomial
probabilities. Earlier in the paper we used the elementary form of Sanov’s Theorem stated in Theorem 2 to derive
the form of the Gibbs state for the discrete ideal gas and to motivate the version ogiGraiheorem needed
to analyze the Curie—-Weiss model. It is hoped that both the importance of Boltzmann’s 1877 calculation and the
applicability of the theory of large deviations to problems in statistical mechanics have been amply demonstrated
in this paper. It is also hoped that the paper will inspire the reader to discover new applications.
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